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ABSTRACT 

Background Stroke-induced aphasia is associated with adverse effects on quality 

of life and the ability to return to work. However, the predictors of recovery are still 

poorly understood. Anatomical variability of the arcuate fasciculus, connecting 

Broca’s and Wernicke’s areas, has been reported in the healthy population using 

diffusion tensor imaging tractography. In about 40% of the population the arcuate 

fasciculus is bilateral and this pattern is advantageous for certain language related 

functions, such as auditory verbal learning (Catani et al. 2007).  

Methods In this prospective longitudinal study, anatomical predictors of post-stroke 

aphasia recovery were investigated using diffusion tractography and arterial spin 

labelling. 

Patients An 18-subject strong aphasia cohort with first-ever unilateral left 

hemispheric middle cerebral artery infarcts underwent post stroke language (mean 

5±5 days) and neuroimaging (mean 10±6 days) assessments and 

neuropsychological follow-up at six months. Ten of these patients were available for 

reassessment one year after symptom onset. Aphasia was assessed with the 

Western Aphasia Battery, which provides a global measure of severity (Aphasia 

Quotient, AQ).  

Results Better recover from aphasia was observed in patients with a right arcuate 

fasciculus [beta=.730, t(2.732), p=.020] (tractography) and increased fractional 

anisotropy in the right hemisphere (p<0.05) (Tract-based spatial statistics). Further, 

an increase in left hemisphere perfusion was observed after one year (p<0.01) 

(perfusion). Lesion analysis identified maximal overlay in the periinsular white 

matter (WM). Lesion-symptom mapping identified damage to periinsular structure as 

predictive for overall aphasia severity and damage to frontal lobe white matter as 

predictive of repetition deficits. 

Conclusion These findings suggest an important role for the right hemisphere 

language network in recovery from aphasia after left hemispheric stroke. 
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CHAPTER 1 FROM POST MORTEM TO IN VIVO DISSECTIONS 

‘It is a tragedy that so many of us learn so little from history  

that could guide us now and in the future.’ 

(William Fields & Noreen Lemark, 1989) 

 

An introduction to the history of connectional anatomy (white matter) in general, and 

the asymmetry of the perisylvian network in particular, will be given below. This 

chapter is adopted from a book chapter that I jointly authored with Marco Catani and 

Michel Thiebaut de Schotten in 2009. 

 

Most of the 19th and 20th century white matter (WM) literature is only available in 

German hence my main contribution to this chapter was the research and 

translation of the historic literature.  

A digital literature review was conducted using Internet databases (i.e. PubMed, 

SCOPUS, and JSTOR). To ensure a thorough search no exclusion criteria were 

applied and multiple combinations of keywords were used. English keywords 

included: arcuate fasciculus or bundle, white matter; German keywords involved: 

Associationsbündel, Bogenbündel, Markfasern, Ungenannte Marksubstanz. 

Additionally, hand-searched original reports from the 19th century were obtained 

from historical collections of several London-based libraries, such as the Institute of 

Psychiatry at King’s College London (Meynert’s and Wernicke’s books), the British 

Library (Burdach’s books), and the Royal Society in London (Reil’s Archiv für die 

Psychiatrie), as well as several Germany-based university libraries including the 

Anatomical Institute at Ludwig-Maximilians-Universität in Munich (Burdach’s books). 

Where available private libraries of the three authors were reviewed as well. Original 

reports were translated by German and French native speakers, namely Stephanie 

Forkel and Michel Thiebaut de Schotten. Anatomical validity of the translations was 

discussed with and reviewed by Marco Catani. 

Sections of the book chapter that relate primarily to commissural (i.e. corpus 

callosum and anterior commissure) and projection pathways (i.e. cortico-spinal 

tract) have been exempt from this thesis chapter and only the association (i.e. 
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uncinate, inferior fronto-occipital, and arcuate) pathways are discussed here. 

Chapter images have been replaced with more educative images that were only 

produced after its publication. For a comprehensive introduction to the history and 

the asymmetry of all white matter pathways, please see the corresponding 

publication (Catani et al. 2010).  

 

1.1 Introduction 

“Here are eight instances in which the lesion was in 

the posterior third of the third frontal convolution. This 

number seems to me to be sufficient to give strong 

presumptions. And the most remarkable thing is that 

in all the patients the lesion was on the left side. I do 

not dare draw conclusions from this. 

—Paul Broca (1863) 

With these words, from a short report of a series of patients with acquired speech 

deficits, begins the modern period of the study of cerebral asymmetry. Despite 

Broca’s reticence to draw any conclusion from his clinical–anatomical observation, 

his words clearly allude to a concept that has stood the test of time: the 

asymmetrical distribution of functions in the human brain. In later writings, Broca not 

only vehemently defended his idea of left lateralisation of speech but also initiated 

the discussion on the anatomical correlates of cerebral dominance (Finger 1994). 

This became an intensely growing field of research where anatomists focused their 

attention on either macroscopic (e.g., volume of gyri) or microscopic (e.g., 

cytoarchitectonic) differences between the two hemispheres. 

However, a handful of researchers faithful to their belief on the importance of brain 

connections have tried to explain cerebral dominance in terms of white matter 

asymmetry. Their efforts were often been limited to speculation, as the availability of 

reliable methods to trace connections in the human brain have been lacking for 

decades. 

Recent developments in magnetic resonance imaging (MRI) have introduced new 

methods, based on diffusion imaging tractography that can reconstruct white matter 

trajectories in the living human brain (Basser et al. 2000; Le Bihan 2003) (please 

see imaging chapter for details). The resultant influx of information on human 

connectional anatomy derived from tractography is likely to fill the gap in our 

anatomical knowledge of human brain connections and reinvigorate models of 
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cognition based on asymmetrical distribution of large-scale networks (Catani & 

Thiebaut de Schotten 2008). 

Hence, the subject matter of this chapter is an overview of the hodological 

(pathway-based) approach to cerebral dominance and its historical context, with a 

special focus on the perisylvian networks. 

Last, we present preliminary contributions from diffusion imaging tractography to 

increase our knowledge of the anatomy of the perisylvian networks, its 

heterogeneity in the healthy population, and possible functional and behavioural 

correlates of different patterns of lateralisation. […] One outcome of this review will 

be to highlight the merits of the hodological approach to cerebral dominance, and its 

modern pursuit with diffusion imaging tractography. 

 

1.2 Early Hodological Approaches to Higher Cognitive Functions and 

Cerebral Dominance 

The seventeenth century was a time of great accomplishments in the brain 

sciences, where anatomists called for a more realistic model of brain function(s) 

than one tied to the pineal gland and spirits flowing from the ventricles into the 

hollow nerves (C. Smith 2007a). 

For the first time, distinct anatomical features of the brain surface were highlighted 

(e.g., lateral fissure as the most prominent cleft of the cerebral hemisphere) and the 

anatomy of previously unknown structures described in some details (e.g., corpus 

striatus). Others, such as Nicolaus Steno (1669), began to draw attention to the 

complexity of the fibre system: 

We need only view a dissection of that large mass, the 

brain, to have ground to bewail our ignorance. On the 

very surface you see varieties which deserve your 

admiration: but when you look into its inner substance you 

are utterly in the dark, being able to say nothing more 

than that there are two substances, one greyish and the 

other white, which last is continuous with the nerves 

distributed all over the body. […] If this substance is 

everywhere fibrous, as it appears in many places to be, 

you must own that these fibres are disposed in the most 

artful manner; since all the diversity of our sensations and 

motions depend upon them. We admire the contrivance of 
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the fibres of every muscle, and ought still more to admire 

their disposition in the brain, where an infinite number of 

them contained in a very small space, do each execute 

their particular offices without confusion or disorder. 

(Translated in Stirling (1902), p. 32) 

 

Despite these early anatomical achievements, new findings on the anatomy of white 

matter and novel ideas about the functional correlates of brain connections were not 

forthcoming. 

Throughout the eighteenth century, the development of physiological methods to 

study the nervous tissue allowed the formulation of theories of nerve conduction as 

scientists moved away from “fluidist” or “vibratory” explanations and began to 

experiment with electricity. This was an important development, although it resulted 

in the shifting of attention from human to animal anatomy and from the central 

nervous system to peripheral nerves. 

The emergence of the hodological theme as a central component of neurological 

and psychiatric thinking took place in the nineteenth century and can be attributed to 

the confluence of two developments: the extension of neuroanatomical research 

from a description of surface morphology to the dissection of the subcortical tracts, 

and the spread of ‘associationist’ models of cognitive functions from the realm of 

psychology to that of neurology and psychiatry (Catani & Mesulam 2008b). An 

obvious conduit for this convergence was the identification of white matter 

pathways. 

 

Below, we review the pioneering anatomical work of Johann Christian Reil and Karl 

Friedrich Burdach, which led to the discovery of most association tracts of the 

human brain. We then introduce the work of Theodor Hermann Meynert and his 

‘associationist’ school, which had a profound influence across countries, continents, 

and centuries. In the final section of this first part, we discuss the disconnection 

paradigm derived from ‘associationist’ theory and Hugo Liepmann’s model of 

cerebral dominance based on the asymmetry of large-scale sensory-motor networks 

for praxis. 
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1.3 The Discovery of the Association White Matter Tracts 

The first development pivotal to the emergence of the hodological approach to brain 

function was the identification of association tracts connecting distant regions within 

the same cerebral hemisphere. Several anatomists made important contributions to 

this field, but Johann Christian Reil and Karl Friedrich Burdach (see Figure 1) stand 

out for the originality of their findings and the far-reaching influence of their writings. 

 

In 1788 Johann Christian Reil became professor at the University of Halle and 

director of the Clinical Institute at the age of 29 (Scharf 1960; Steffens 1815). In 

1795 Reil founded the first physiology journal in Germany, namely the Archiv für die 

Physiologie, which he used as a vehicle for many publications about anatomy and 

physiology, including his own description of cortical and subcortical brain structures 

(Reil 1809a; Reil 1812b). His anatomical discoveries were derived from the 

development of a method based on the soaking of the brain in alcohol (initially he 

used brandy) that made it more suitable for dissection (Reil 1808). This method 

allowed him to reveal the course of the white matter bundles running beneath the 

major convolutions of the human brain (see Figure 1). 

 

 

Figure 1  The discovery of the association tracts of the human brain  

The table shows the correspondence between Reil’s original terms in German (Reil 1812b; 
Reil 1809b; Reil 1812a), Burdach’s German and Latin terminology (Reil 1809b; Burdach 
1822) and the names used in contemporary international nomenclature (Meyer 1970; 
Commitee 1989). A, B) The development of a method based on the soaking of the brain in 
alcohol that made it more suitable for dissection led Reil to discover the major association 
white matter tracts of the human brain. C, D) Burdach confirmed the findings of Reil and 
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introduced a novel nomenclature for the main association tracts that remains almost 
unchanged in the current international nomenclature. 

Among the tracts that Reil identified were the medial curving fibres within the 

cingulate gyrus (i.e. Bedeckte Bänder or Längenbänder) (Reil 1812b) and the lateral 

arching connections coursing beneath the perisylvian fronto-parieto-temporal gyri 

that he described as the unnamed white matter substance (i.e. Ungenannte 

Marksubstanz) (Reil 1812a). Other tracts that he identified on the most ventral part 

of the brain are the hooked-shaped fibres behind the insula (i.e. Hakenförmiges 

Markbuendel) (Reil 1809c) and a longitudinal bundle between the occipital and 

temporal lobes (i.e. Stratum von Längenfasern) (Reil 1812b). Reil illustrated and 

commented on the presence of these tracts on both hemispheres and their possible 

role: 

Each hemisphere is an independent organ and forms a 

closed loop in its own; both loops flow into each other 

through the mentioned structures [arcuate and uncinate]. 

(Reil 1809b) 

 

Reil’s findings were confirmed a decade later by Karl Friedrich Burdach, who was 

conferred doctor in medicine in Leipzig in 1799 and received a professorship for 

anatomy, physiology, and forensic medicine in Dorpat in 1811 (Meyer 1970). Here 

he commenced his anatomical dissections of the brain that he continued after 

moving to Königsberg as director of the Anatomical Institute. His studies culminated 

in the Vom Baue und Leben des Gehirns; a three-volume textbook containing 

confirmatory dissections of Reil’s findings and his own original descriptions of some 

previously unidentified tracts, including the fibres connecting the occipital to the 

frontal lobe, later identified as part of the inferior fronto-occipital fasciculus (Curran 

1909) (Figure 2). He also used Latin names for the major tracts, which became 

widely adopted and still remain almost unchanged in the current international 

anatomical nomenclature (see Figure 1). 
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Figure 2  Seminal historical contributions to the anatomy of the inferior fronto-
occipital fasciculus in the healthy human brain. Taken from Forkel et al. (2012) 

Both, Reil and Burdach, were fascinated by Schelling’s natural philosophy, which 

inspired their functional interpretations and speculative reflections (Meyer 1970). 

However their functional inferences were either dismissive of the role of the 

association tracts (e.g., Reil) or based on erroneous physiological speculations 

(e.g., Burdach): 

The core [of the brain] is constituted by the organizations 

of the crus cerebri [Hirnschenkel] and the corpus 

callosum [Balken]. These together with the gyri and the 

grey matter seem to be the fundamental component of 

the brain; everything else seems to be just connection 

and transduction apparatus. (Reil 1809a) 

Fantasy is warm and lively; organically linked to blood 

circulation and can therefore be excited by the fast 

change of blood, resulting in a stronger tension in the 

brain. Reason in contrast is cold and cautious; any 

tempestuous movement is hostile to it [...]. The 

longitudinal system [association fibres] is more closely 

layer of the ventricle, can be considered as rudimentarily devel-

oped corpus callosum.’ (Eichler, 1878).

Almost a decade later, Wladislaus Onufrowicz, a Ph.D
student at the University of Zurich under the supervision of
Prof. Auguste Forel, described Eichler’s findings inmore detail.
He published his thesis in the Archiv für Psychiatrie und
Nervenkrankheiten (1887), which contained a comprehensive
review of all 27 single-case reports of acallosal brains pub-
lished since the year Reil described the first patient in 1812.
Onufrowicz gave an accurate account of the Fronto-occipitales
Associationsbündel, which he claimed to be the equivalent of

the arcuate fasciculus in the healthy brains:

‘This fibre tract may aptly be called ‘Fronto-occipitales Associa-
tionsbündel’ [associative fronto-occipital fasciculus] or could be
referred to as the true fasciculus longitudinalis superior. The
ingenious Burdach [.] recognised, or rather guessed, this tract
and called it the arcuate fasciculus or superior longitudinal
fasciculus. Yet neither his [Burdach’s] nor Meynert’s descriptions
of this tract are obvious and it is virtually impossible to prove it
[fronto-occipital fasciculus] in the normal brain. We were able to
appreciate this tract, located amongst callosal radiations in the

normal brain only after comparison with our experiment of
nature, in the case of agenesis of the corpus callosum.’
(Onufrowicz, 1887).

Onufrowicz hence regarded this fibre system as a normal
tract rendered prominent by the absence of the corpus

callosum. He thought this tract has hitherto not been identi-

fied in healthy brains due to crossing with two major white
matter tracts, namely the corpus callosum and the corona
radiata (see Appendix 1 for full translation).

The same bundle was also described in an acallosal post-
mortem study by Eduard Kaufmann (1887, 1888) who
initially disagreed with Onufrowicz’s interpretation and sug-
gested that the tract corresponds to the cingulum in the
healthy brain:

“On the right hemisphere this [the author refers to the group of
fibres he previously described in the left hemisphere] is replaced

by [.] only one massive bundle, which radiates fibres in all
directions. Evidently, this is the association system of the
cingulate gyrus [in the original text: gyrus fornicatus]. Due to the
missing penetration of the corpus callosum this system is directly
abutting superiorly to the wall of the ventricle and is in direct
continuity with this structure.” (Kaufmann, 1887).

Five years later, Heinrich Sachs, a student of Wernicke, re-
examined Kaufmann’s specimen and made the important
observation that the superior fronto-occipital tract is in fact
composed of the callosal fibres that failed to transverse the

interhemispheric midline:

“Owing to Mr. Kaufmann’s courtesy I was able to re-examine his
anatomical preparations. I hereby arrived to the conclusion that
this is not indeed an acallosal brain. The fibres of the corpus
callosum are all present; they merely do not transverse to the

Fig. 1 e Seminal historical contributions to the anatomy of the iFOF in the healthy human brain between 1822 and 1962.

c o r t e x x x x ( 2 0 1 2 ) 1e1 2 5

Please cite this article in press as: Forkel SJ, et al., The anatomy of fronto-occipital connections from early blunt dissections to
contemporary tractography, Cortex (2012), http://dx.doi.org/10.1016/j.cortex.2012.09.005
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linked to the blood vessels [...] its alert activation causes 

more blood to be drawn to the vascular plexus [...]. The 

transverse [commissural] system on the contrary is in no 

special relation to the vascular system. p.338, Burdach 

(1826) 

 

This theoretical vacuum left the field open to the triumph of cortical ‘localisationist’ 

theories and the fierce antilocalisationist opposition based on holistic stances. One 

would have to wait until the second half of the century for the emergence of the 

hodological theme following the spread of ‘associationist’ models of cognitive 

functions from the realm of psychology to that of neurology and psychiatry (James 

1890; Meynert 1885; Wundt 1904). According to the associationist doctrine, the 

formation of concepts, the recall of memories, the naming of objects, and even the 

spontaneous and voluntary initiation of movement, required the associative 

convergence (or integration) of information from multiple sources. The association 

tracts seemed to be the ideal anatomical substrate for such a theory. 

 

1.4 Meynert’s Associationist Theory of Brain Function 

The idea of association has roots in Aristotle’s writing and has been passed down 

the centuries from Epicurus through Hobbes to Hartley (Glassman & Buckingham 

2007).  

However, the credit for the formulation of an associationist theory grounded on 

anatomy falls to a psychiatrist known by his contemporaries as the great brain 

anatomist, Theodor Meynert, who was then Professor of Nervous Diseases and 

Director of the Psychiatric Clinic in Vienna. He took an original position with regard 

to the explanation of brain function and mental disorders (Catani & ffytche 2005). He 

first rejected contemporary theories of predisposition, which became the psychiatric 

the theory of moral insanity: 

As regards to the theory of predisposition, and more 

particularly the doctrine of hereditary, which has been carried 

to the extreme of assuming the existence of innate idea, and 

which in clinical medicine, has led to the erroneous theory of 

moral insanity, I have deemed it necessary to criticise, in its 

proper connections, Darwin’s theory of the inheritance of 

acquired faculties, as has been done before me by other 
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German authors, among them DuBois-Reymond and 

Weissman. It is taking altogether too simple a view of things, 

to regard morality as one of man’s talents, and as a definite 

psychical property, which is present in some persons and 

lacking in others. (Meynert, 1885, preface, viii). 

 

Thus, “dissatisfied with the statistical method, which laid inordinate stress upon 

hereditary predisposition to disease,” Meynert resolved for an anatomical approach 

to mental disorders: 

In view of the necessity of starting from anatomical facts, I 

have endeavoured, in every case, not only to give due weight 

to the structure of the brain as the fundamental basis for the 

various forms of disease, but have endeavoured, with the 

same end in view, to insist upon and to explain every visible 

symptom exhibited by the patient. (Meynert, 1885, preface, 

vii) 

 

Meynert’s ambitious clinical research program aimed to establish the anatomical 

bases not only of mental disorders but also of specific symptoms; the success of its 

realization depending entirely on the deep anatomical knowledge of the human 

brain. 

In 1884 he published (in German) Psychiatry—Clinical Treatise on Diseases of the 

Forebrain based upon a study of its structure, functions, and nutrition, impelled by 

the conviction of a need for a “scientific” treatise on mental disease. The title is a 

direct attack on the “science of psychiatry [that] has been too largely subjective” and 

refers “to the fundamental studies [of structure] indispensable to an understanding 

of the clinical manifestations of mental disease” (Meynert, 1885, p. Vi). The first 

volume of the Treatise, which Heinrich Sachs translated and published in English 

the year after (Meynert 1885), contains Meynert’s description and classification of 

the main white matter tracts of the brain (see Figure 3). Before him, other 

anatomists such as Vieussens, Vicq d’Azyr, Reil, Burdach, and Gall had described 

differences in origin, course, and termination of fibres, but Meynert was the first to 

put forward an orderly classification of white matter fibres into three groups. 
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Figure 3 White matter classification after Meynert and his explanation of limb 
movement 

Meynert used this diagram as an example to explain his associationist theory applied to the 
mechanism of an unconscious movement of the arm. A flame has injured a child’s hand and 
the hand is therefore withdrawn as a reflex. The visual image of the flame, the painful 
sensation and the sensation of the reflex movement will also be conveyed to cortical centres 
(A and B). ʻSince centre C is connected with [the other sensory centres] the child need not 
actually burn his hand again before guarding against the flame; but the memory of the flame 
and of its effect (through association with the centre in which the painful sensation has been 
stored), will suffice, through the one or the other of these associations, to initiate a 
movement which will put the arm beyond the reach of the flame.ʼ A. Part of the visual cortex; 
B. Part of the cortical centre for cutaneous sensation; C. A centre in the for sensations of 
innervation; cd. Cerebellum; CN. Caudate nucleus; D. Mesencephalon; F. Frontal cortex; L. 
Pons Variolii; LN. Nucleus lenticularis; M. Medulla oblongata, terminating with a cross-
section of the cervical spinal cord; O. Medulla oblongata; Occ. Occipital cortex; hT. 
Thalamus opticus. On the right black connections correspond to association fibres, blue, 
centripetal projection fibres and red centrifugal projection fibres. 

The first group consisted of projection fibres, the ascending or descending pathways 

arising and terminating in the cortex, the second of commissural fibres, which 

connected cortex in both hemispheres (interhemispheric), and the third of 

association fibres, which connected cortical regions within a hemisphere 

(ipsilateral). He further subdivided the association tracts (or “fibrae propriae”) into 

two groups, the U-shaped and the long association bundles, according to their 

cortical projections and the length of their subcortical course: 

The U-shaped bundles of the cortex do not necessarily 

extend simply from one convolution to one next adjoining, but 

they may skip one, two, three, or an entire series of 

convolutions, and may thus join convolutions which are 
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united among themselves to a convolution lying at some 

distance from these. The shortest fibrae propriae lie nearest 

to the cortex; the longest at the greatest depth, and are 

separated from the cortex by other intervening fibrae 

propriae, the length of which increases gradatim from the 

surface inward. (Meynert, 1885, p. 39) 

 

Once he had laid down the anatomical foundations of the model Meynert defined a 

specific role for each group of connections. 

First Meynert extended Bell’s division of the sensory ascending (centrifugal) and 

motor descending (centripetal) tracts of the spinal cord to the brain, thus 

considering the projection fibres, the major communication system between 

specialized cortical regions and peripheral sensory organs and muscles. Then he 

added a layer of complexity to the model by introducing the association fibre 

system: 

In examining the structure of the hemispheres, and 

remembering that different, distinctly limited and functionally 

separated portions of the cortex receive impressions from the 

various senses, we may naturally infer that the association-

bundles, the fibrae propriae of the cortex, which form 

anatomical connections between the different cortical 

regions, effect the physiological associations of the images 

which are stored in these various parts. (Meynert, 1885, p. 

153) 

 

Thus, in this model, the cortex, through its projection and association connection 

system, becomes a place not only for sensation and motor response but also for 

higher cognitive functions and complex behaviours such as “logical functions” (e.g., 

Schlussprocess, Induction), “recollection,” “learning,” and “initiation of conscious 

movement” (see Figure 3). 

Meynert was an outstanding neuroanatomist of international repute who attracted 

young doctors eager to learn anatomy from all over Europe and North America. 

Among them were Carl Wernicke, Sergei Korsakoff, Auguste-Henri Forel, Paul 

Flechsig, Bernard Sachs, and Sigmund Freud. Although Meynert used his 
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neuroanatomical findings to develop a theory of psychological function, which had 

profound influence on the early development of psychiatry, it was one of his most 

talented students, Carl Wernicke, who brought the associationist model to the clinic 

by applying the disconnection paradigm to explain neurological and psychiatric 

disorders. 

 

1.5 Disconnection Syndromes and Early Hodological Theories of 

Hemispheric Dominance 

Carl Wernicke (1848–1904) was born in Tarnovitz, which was in those days a town 

in Prussian Upper Salesia but is now in Poland. He read medicine in Breslau 

(Wraclaw) where he undertook most of his studies except for a six-month period in 

Vienna with Meynert (Keyser 1994). Wernicke was greatly influenced by his 

teacher’s Associationist theory, and in his doctoral dissertation “Der aphasische 

Symptomencomplex” he postulated that if higher cognitive functions arise through 

associative connections, disorders of higher function must derive from their 

breakdown. 

On the basis of this corollary he explained a disconnection syndrome that was to 

become the prototype for all others — conduction aphasia (Leitungsaphasie), 

characterised by normal comprehension and intact verbal fluency but impaired 

repetition due to a lesion of the fibres connecting Broca’s and Wernicke’s areas 

(Wernicke 1874).  

In Breslau Wernicke established one of the most important associationist schools. 

The disconnection paradigm was meanwhile applied not only to aphasia but also to 

other neurological (e.g., associative agnosia) (Lissauer 1890) and psychiatric (e.g., 

schizophrenia) (Wernicke 1906) disorders. However, it soon became evident that 

the disconnectionist paradigm per se was not sufficient to explain the association 

between certain manifestations and localisation of lesion in one hemisphere (i.e. 

lateralisation of symptoms). Surprisingly, Wernicke explained the lateralisation of 

language disorders by postulating the existence of specialised language centres in 

the left hemisphere. Similarly, Jules Dejerine when describing a disconnection 

syndrome characterized by inability to read but preserved writing, namely pure 

alexia, localised the centre specialised for reading in the left angular gyrus. It was 

one of Wernicke’s students, Hugo Liepmann (Figure 4), who put forward an 

alternative explanation for the hemispheric dominance: the anatomical lateralisation 

of connections. 
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Hugo Liepmann joined Wernicke’s clinic as an assistant in 1895 and carried the 

Breslau associationist doctrine to Berlin when he left four years later (Goldenberg 

2003). Here he developed an interest in the motor system, which led him to propose 

a disconnectionist account of goal-directed movement disorders — the apraxias. 

Liepmann’s theory of apraxia, first published in 1900, was based on his case study 

of a 48-year-old imperial counsellor (Regierungsrat) who was admitted to the Berlin 

psychiatric service with a diagnosis of mixed aphasia and dementia (Liepmann 

1900). Although his spontaneous movements were normal (e.g., using a spoon 

while eating), a striking feature of the patient was that when asked to perform or 

copy gestures with his hand (e.g., point to your nose) or manipulate imaginary 

objects (e.g., show how you use a harmonica), he did so in an absurd fashion. 

Since the patient was able to understand the command, had no visual impairment, 

and had no evidence of paralysis, Liepmann formulated a network model for praxis 

(see Figure 4) and then hypothesised a disconnection of visual, auditory, and 

somatosensory areas from motor areas to explain the symptoms displayed by the 

counsellor: 

I do not think there is a praxis centre, or even that it is located 

[…] in the supramarginal gyrus. I never postulated that the 

apraxia of the counsellor is only due to a lesion in the 

supramarginal gyrus or that this is true for all cases of 

apraxia. In my case report I have postulated an interruption of 

the sensory-motor region of the right extremities from the 

most important cortical regions of both hemispheres, and 

thought that in this case the evidence is the disruption of the 

white matter of the supramarginal gyrus and the callosal 

connections from the other side. And I was right as the 

autopsy confirmed. (Liepmann, 1908, p. 77) 

 

Liepmann generalised his conclusions to all cases of apraxia for which he 

postulated a disconnection mechanism at different segments and nodes of the 

network and speculated on the leftward asymmetry of the praxis networks to explain 

the higher frequency of left hemisphere lesions in these patients: 

Eupraxic movement results from the collaboration of many 

brain regions with the hand area. Lesions to the cortical 

regions and especially their connections with the hand centre 
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at different points can impair praxis. […] Especially the left 

hemisphere hand centre including its connections to the rest 

of the brain in particular in the same hemisphere is 

irreplaceable; therefore, lesions to the left hemisphere are 

disastrous for praxis of all extremities. (Liepmann, 1908, p. 77) 

 

Unlike his predecessors, Liepmann took an original position to explain the 

neurobiological underpinnings of left-hemisphere dominance for praxis. His model 

does not imply the existence of a left-dominant cortical area for complex movement 

control. 

 

Figure 4 Hugo Liepmann and his diagrammatic 
explanation of the network underlying praxis and apraxia 
syndrome 

Instead, left dominance for praxis is considered the result of an asymmetrical 

distribution of the sensory-motor pathways: “The contralateral connections are of 

subordinate importance as compared to the link of the left hand area with the rest of 

the brain.” Liepmann added that his diagram is not only relevant to apraxia, as if it 

could also explain other lateralised syndromes. However, Liepmann’s explanation 

was highly speculative in the absence of experimental evidence to support his 

claims. For a review, see Goldenberg (2003).  

If the associationist school and the disconnectionist paradigm were to replace 

cortical localisationism in the neurology clinics, anatomical support was urgently 

needed. 
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1.6 Association Tracts 

The uncinate fasciculus is the main association tract between the anterior temporal 

lobe and the inferior orbitofrontal cortex and is considered part of the extended 

limbic system. Pathology involving the uncinate fibres and its cortical projections 

has been associated with several symptoms including memory impairment, 

language deficits, and neuropsychiatric syndromes (Mega et al. 1997). The 

asymmetry of the volume and density of fibres of the uncinate fasciculus has been 

revealed in only one study using microscopy on human brains. The uncinate 

fasciculus was asymmetrical in 80% of subjects, containing on average 30% more 

fibres on the right than the left hemisphere (Highley et al. 2002). Voxel-based 

morphometric (VBM) studies of the white matter region containing uncinate fibres 

(i.e. anterior floor of the external capsule) are contrasting with both leftward (Hervé 

et al. 2006) and rightward (Good et al. 2001) asymmetry reported. 

 

The arcuate fasciculus is a large association tract connecting perisylvian areas of 

the frontal, parietal, and temporal lobes. The arcuate fasciculus is involved in higher 

cognitive functions showing various degrees of functional lateralisation such as 

language, visuo-spatial processing, and social behaviour.  

MRI has been used for VBM studies of the arcuate fasciculus. In general, the white 

matter regions containing fibres of the arcuate fasciculus are larger on the left 

compared to right (Hervé et al. 2006). However, there is also some evidence for 

regional differences in the asymmetry within different segments of the arcuate 

fasciculus, with most ventral regions being larger on the left and dorsal regions 

being larger on the right (Good et al. 2001). Furthermore, an increase in white 

matter density in the left arcuate fasciculus during childhood and adolescence has 

been reported (Paus et al. 1999). In a recent study, Blanton et al. (2004) 

documented significant gender differences in the white matter of the left inferior 

frontal gyrus (IFG), a region containing anterior projections of the arcuate 

fasciculus: boys but not girls showed a linear age-related increase in the white 

matter volume in this region. It remains to be determined whether such differences 

are to be attributed to only the arcuate fasciculus or other tracts connecting 

perisylvian regions. This is an issue that has been partially resolved with diffusion-

tensor imaging (DTI) tractography. 

DTI has been applied to study the in vivo asymmetry of the larger association tracts. 
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Büchel et al. (2004) used VBM and found higher left fractional anisotropy (FA) in a 

region corresponding to the arcuate fasciculus. Opposite results were reported by 

Park et al. (2004) with higher FA in the right arcuate fasciculus compared to the left. 

They also found lower FA on the left hemisphere for the uncinate and inferior and 

superior longitudinal fasciculus but reduced FA in the right cingulum compared to 

the right. Higher FA was also found in the left superior longitudinal fasciculus 

compared to the right (Makris et al. 2005), and the uncinate fasciculus (Kubicki et 

al. 2002; Rodrigo et al. 2007). […] 

Wakana et al. (2004) dissected the major association tracts in 10 healthy subjects 

and found greater volume for the left superior longitudinal fasciculus, inferior 

longitudinal fasciculus (ILF), and cingulum. 

Our own data confirm a leftward FA asymmetry for the arcuate fasciculus (Figure 

5). […]. How these interindividual anatomical characteristica might relate to function 

will be elaborated on in the next section. 

 

 

Figure 5 Arcuate fasciculus lateralisation in the healthy population  

The arcuate fasciculus (sensu strictu) is significantly left-lateralised in the population. When 
the tract is separated into its three segments, the posterior segment (yellow) is bilateral 
whereas the anterior segment (green) is right-lateralised and the direct connection between 
Broca’s and Wernicke’s area (red) is left lateralised. T(39) = 3, p < .01. 

1.7 Asymmetry of Perisylvian Pathways and Behavioural Correlates 

The first tractography studies applied to the perisylvian pathways showed that the 

anatomy of the arcuate fasciculus is more complex than previously thought (Catani 

et al. 2005; Parker et al. 2005). 

In addition to the long direct segment connecting Wernicke’s area with Broca’s 

territory (i.e. the arcuate fasciculus sensu strictu), there is an indirect pathway 
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consisting of two segments, an anterior segment linking Broca’s territory with the 

inferior parietal lobule (Geschwind’s territory), and a posterior segment linking the 

inferior parietal lobule with Wernicke’s territory (Catani et al. 2005). This 

arrangement not only supports the more flexible architecture of parallel processing 

(Mesulam 1990) but also is in keeping with some of the classical neurological 

models of aphasia, contemporary models of verbal working memory (Baddeley 

2003), and recent functional neuroimaging findings (Jung-Beeman 2005; Sakai 

2005).  

Additional support for the existence of the three perisylvian segments of the ‘arcuate 

fasciculus’ comes from other DTI studies (N. Lawes et al. 2008), human 

intraoperative electrocorticography (Matsumoto et al. 2004), functional connectivity 

(Schmithorst & Holland 2007), post mortem dissections (N. Lawes et al. 2008), and 

experiments in homologous parts of the monkey brain (Deacon 1992). 

Tractography is also revealing unexpected findings about the projection of the 

arcuate fasciculus, whose cortical terminations extend beyond the classical limits of 

Wernicke’s and Broca’s areas to include part of the posterior middle temporal gyrus 

and middle and precentral frontal gyrus, respectively (Catani et al. 2005). More 

anterior and ventral portions of Broca’s territory seem to be connected to posterior 

temporal and occipital regions through the uncinate and the inferior fronto-occipital 

fasciculus (IFOF) of the ventral pathway system (Anwander et al. 2006; Barrick et 

al. 2007). Finally tractography applied to language pathways highlights the 

importance of the inferior parietal cortex as a separate primary language area with 

dense connections to classical language areas through the indirect pathway. 

Geschwind’s territory corresponds to Brodmann’s areas 39 and 40, and although its 

importance as a linguistic region has been recognized for some time, the exact role 

of this area is still largely unknown (Catani et al. 2005) (see Chapter 2).  

After adolescence, the degree of lateralisation of the long segment is quite 

heterogeneous. 

An extreme degree of leftward lateralisation is observed in approximately 60% of 

the normal population (see Figure 6) (Catani et al. 2007). The remaining 40% of the 

population show either a mild leftward lateralisation (∼20%) or a bilateral, 

symmetrical pattern (∼20%). Similar results are reported for left-handed subjects 

(Hagmann et al. 2006; Vernooij et al. 2007). Of particular interest is the report of a 

gender dimorphism with respect to the lateralisation of the long segment, with 
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females more likely to have a bilateral pattern compared to males (see Figure 6) 

(Hagmann et al. 2006; Catani et al. 2007). 

 

Figure 6 Inter-individual arcuate lateralisation and correlation with the California 
Verbal Learning Test (CVLT) 

An important question is the extent to which structural differences between the two 

hemispheres correlate with functional lateralisation and whether the anatomical 

lateralisation of language pathways reflects differences in language performance. 

Preliminary studies combining DTI tractography and functional Magnetic Resonance 

Imaging (fMRI) show no correlation between the lateralisation of the arcuate volume 

and the degree of functional lateralisation as determined by fMRI during tasks of 

verbal fluency, verb generation, and reading comprehension (Powell et al. 2006; 

Vernooij et al. 2007). However, when extracting the fractional anisotropy along the 

entire arcuate fasciculus, these values are lateralised and seem to correlate better 

with the functional lateralisation as demonstrated in healthy individuals (Powell et al. 

2006) and in patients with temporal lobe epilepsy (Rodrigo et al. 2007). This might 

imply that it is not the mere anatomical lateralisation but microstructural indices that 

might best correlate with function.  

There are also preliminary findings showing that an extreme left lateralisation of the 

direct long segment is associated with poorer performance on a complex verbal 

memory task that relies on semantic clustering for retrieval (i.e. the California Verbal 

Learning Test, CVLT). The correlation remained significant after splitting the group 

according to gender, suggesting that the main determinant of CVLT performance is 

the anatomy (symmetry) of the language pathways, not the gender. Overall, these 

   

Catani et al PNAS!Catani et al PNAS!Catani et al PNAS!
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findings support the notion that lateralisation of language to the left hemisphere is 

an important aspect of human brain organization, but paradoxically a bilateral 

representation might ultimately be advantageous for certain cognitive functions. 

 

1.8 Conclusions 

Although the hodological approach to cognition has a long history, the study of tract 

lateralisation is (surprisingly) still at its infancy. If the lack of methods suitable for 

anatomical studies of connections in the living human brain can in part justify this 

gap in knowledge, the complete absence of data on the monkey brain, for which 

powerful axonal tracing techniques are indeed available, is even more surprising.  

For decades, anatomical drawings of tracts have been passed on to the anatomical 

textbooks of the next generation, and often the presence of those tracts in both 

sides of the brain was taken for granted. The recent flourishing of techniques based 

on diffusion imaging suggests that this leap of faith may not necessarily be true for 

tracts underlying unique human abilities. Clearly, we need a research program that 

sets off from the footsteps of the ‘great neuroanatomists’ of the nineteenth century, 

leading us to address those questions that for too long have remained unanswered. 

Now, with unprecedented access to the connectivity of living human brain we can 

compare asymmetry of connections across species, formulate novel 

neuropsychological models based on anatomical findings on laterality, and take into 

account inter-individual variability within the spared hemisphere to predict recovery 

in patients with brain disorders. 

(Full publication can be found in Hugdahl & Westerhausen 2010). 
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CHAPTER 2 APHASIA 

 ‘The theory of aphasia is the most difficult area of neurology’ 

(Luria, 1977) 

 

People have an estimated 30.000 words encoded in their verbal memory, which 

they actively1 use for communication. During a conversation 250 milliseconds are 

required to identify a heard word (regardless of the identification of context) 

(Marslen-Wilson & Tyler 1980). This elucidates the highly time-locked and efficient 

language processing needs of the human brain. Perceiving and producing 

connected speech are automatic for most people and the enormous cerebral 

computational effort is rarely appreciated unless the system produces errors (e.g., in 

the form of ‘Freudian’ mistakes in healthy people or aphasias in patients). The brain 

generates and integrates sentences made from phonological (sound), syntactical 

(grammatical) and semantic (meaning) information. If this neural system is severely 

impaired, for example, in aphasia patients who lose the ability to articulate or 

comprehend language, the identification of words (heard or to be produced) is 

disrupted and people lose the ability to communicate; often with devastating 

consequences for their private and professional lives. Hence I will next give an 

introduction to our current understanding of aphasia - including its causes, a brief 

discussion of aphasia assessments, and a historical account of aphasiology. The 

main focus, however, will be on stroke-induced (i.e. acquired) aphasias – as this is 

the topic of this thesis. This will be complemented by a selective review of the 

different methods used to determine the neural basis of language. 

  

                                                
1 The breadth of vocabulary expands with the years of education. It is estimated that 
the active vocabulary, meaning the words that are expressed in everyday speech, of 
an average English speaker contains 30,000 content words (Alekoumbides 1978; 
Levelt 1989). Passive vocabulary, i.e. the words that are understood but not 
expressed in everyday language, are vastly exceeding this number (Mariën et al. 
2004; Seashore & Eckerson 1940; Müsseler & Prinz 2002). 
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2.1 Definition of Aphasia 

The term aphasia was introduced by Trousseau in 1864 in his article poignantly 

entitled ‘On aphasia, a sickness formerly wrongly referred to as aphemia’. Aphemia 

was the term introduced and preferred by Broca. For terminological discussion 

between Trousseau and Broca see (Ryalls 2003). Aphasia derives from the Greek 

word for language combined with the a prefix, meaning ‘without language’ (Greek 

ἀφασία). Various definitions have been proposed throughout the centuries, each 

reflecting the theoretical constructs of their time. Today’s definition may henceforth 

be seen as a ‘working definition’ that is again likely to change over the next 

centuries: Aphasia is a disturbance of the reception and/or expression of language, 

in which the construction of words and sentences is marred by errors of form, 

content, and grammar (ICD-10); this loss or deterioration of verbal communication is 

due to an acquired lesion of the nervous system (Basso & Cubelli 1999). 

 

It was noticed early in history that aphasia is a language disorder, and not a speech 

disorder (i.e. sensorimotor impairments of the articulatory apparatus such as 

dysarthria). Language disorders can affect all domains of language and contribute 

to impairments in writing (dysgraphia), reading (dyslexia) or in comprehension 

and/or articulation of continuous speech (dysphasia). Expressive deficits can arise 

from word finding difficulties (anomia), production of unintended words (paraphasia), 

loss of grammatical structure (agrammatism), inability to repeat auditory presented 

words, reduced verbal (categorical and lexical-phonemic) fluency, and the loss of 

intonation (aprosody). All of these symptoms can be expressed in isolation or 

combination. Depending on the impairment pattern, different taxonomies have been 

proposed which will be discussed below. 

 

2.1.1 Causes of aphasia 

Aphasias are, without exception, caused by cerebral pathology suffered through 

accident or disease at any given point in life. Two main groups can be distinguished: 

congenital and acquired aphasias. The latter group is defined as an acquired loss of 

language function after having gained eloquence. This loss of function can be 

induced by neurodegeneration (e.g., primary progressive aphasia (Mesulam 1982), 

trauma or cerebrovascular events). 
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Cerebrovascular aphasia, in contrast to neurodegenerative aphasia, is 

characterised by sudden loss of expressive and/or receptive language. Within the 

acquired language dysfunctions stroke-induced aphasia constitutes 80%, followed 

by traumatic brain injury with 10%, brain tumours (7%), infections and hypoxia (each 

1%) (Wehmeyer & Groetzbach 2010). Acquired aphasias can be ascribed to lesions 

of the left hemisphere in the majority of cases. The left hemisphere is considered 

language dominant or eloquent in approximately 95% of the right-handed population 

and interestingly for a majority of left-handers as well (see Table 1 for early cortical 

stimulation data and for a review see (Alekoumbides 1978). Crossed aphasias, 

where a right hemispheric lesion induces aphasia symptoms in right-handed 

patients are rare but do occasionally occur. These patients tend to recover well 

(Mariën et al. 2004). 

 

Table 1 Hemispheric localisation pattern stratified for handedness.  

Data taken from the early intraoperative cortical stimulation studies by Penfield and Roberts 
(1959). 

 Left hemisphere (%) Right hemisphere (%) 

Handedness Total Aphasic (%) Total Aphasic (%) 
Right 157 115 (73.2) 196 1 (0.5) 

Left 18 13 (72.2) 15 1 (6.7) 

Total 175 128 (73.1) 211 2 (0.9) 

 

Even though the definition of aphasia does not specify the lesioned hemisphere, the 

neuroscience community has generally been working under the assumption that the 

left hemisphere is language dominant. The left middle cerebral artery (LMCA) 

irrigates most of the left hemispheric cortical and subcortical areas (details in 

Chapter 4). Vessel occlusions and ruptures can cause a spectrum of language 

impairments. Cortical infarcts within this territory are seldom restricted to merely 

cortical regions and tend to reach beyond the damage to the convexity. This might 

account for complex forms of language dysfunctions that reach beyond the 

symptoms one would expect from a cortical lesion. Damage to subcortical nuclei 

and white matter connections can likewise cause language deficits especially when 
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the thalamus, basal ganglia, internal capsule and/or the perisylvian2 white matter 

connections are affected (Luria 1966; Kertesz 2007; Cappa 1997; Nadeau & 

Crosson 1997; Duffau, Leroy, et al. 2008a; Crosson et al. 1986; Friederici 2006). 

Lesions to these structures, especially the thalamus, result in ‘fluent but paraphasic 

output sometimes deteriorating to jargon […] and at least impairment in 

comprehension’ p. 301, (Crosson et al. 1986). Subcortical aphasias are similar to 

cortical aphasias in their clinical presentation but are generally transient (Kertesz 

1988a).  

 

2.1.2 Aphasia symptoms and taxonomy 

Since the early 19th century, where the primary symptom was loss of articulation 

(Broca’s definition) and/or comprehension (Wernicke’s definition), the 

symptomatology of aphasia has been subject to a proliferation of nomenclature and 

fine-grained taxonomy. The currently defined symptoms will be described with 

examples in Table 2, all of which can appear in isolation or in co-presentation. 

  

                                                
2 Perisylvian refers to all cortical and subcortical structures adjacent to the lateral 
fissure, also referred to as Sylvian fissure. This includes the superior (and middle) 
temporal gyri, the inferior parietal lobe and the inferior and middle frontal gyri. 
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Table 2 Aphasia Syndromes: definitions with examples 

 

_________________________ 
3Segmental features of language are semantic, syntactic and articulatory processes; 

whereas suprasegmental are additive features such as prosody and affect. A 

hemispheric specialisation was suggested for both components (see below). 
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Based on these symptoms different classifications have been proposed, some of 

which are anatomically based whereas others are purely hypothetical. Recently, 

Ardila (2010) suggested a revised taxonomy based on contemporary neuroimaging 

data (Table 3). Although his efforts were recognised as novel, this new taxonomy 

was not adopted in the research community as it still relied on previously described 

categories with no added value for clinical practice (Marshall 2010). Different 

approaches can be utilised to achieve a classification of clinical symptoms into 

homogenous groups of patients. The usefulness and adequacy of such approaches 

are discussed later in this chapter. Depending on the applied method the number of 

aphasia type clusters may range between two to eight (Table 3). Three main 

classification approaches will be discussed below and a selective overview of six 

taxonomies is provided in Table 3. A historical appreciation of earlier accounts can 

be found in (Lecours, Lhermitte, et al. 1983b; Roch Lecours et al. 1992). 

 

Table 3 Taxonomy of aphasia (selected approaches). 

(Luria 1966) (Benson & 
Geschwind 1971) 

(Kertesz & 
Phipps 1977) 

(Hecean & Albert 
1978) 

(André 
Lecours, 
Lhermitte, et al. 
1983b) 

(Ardila 2010) 

Efferent motor Broca Broca Agrammatic Broca Primary (central) 
aphasias: 

Broca-type 
(non-fluent) 

Sensory Wernicke Wernicke Sensory Wernicke type I Wernicke-type 
(fluent) 

Afferent motor Conduction Conduction Conduction Conduction  

Dynamic Transcortical 
motor 

Transcortical 
motor 

Transcortical 
motor 

Aspontaneity Secondary 
(peripheral) 
aphasias: 

n/a Transcortical 
sensory 

Transcortical 
sensory 

Transcortical 
sensory 

Wernicke’s 
type II 

Conduction 
aphasia 

n/a Isolation language 
area 

Isolation n/a n/a SMA aphasia 

Semantic 
amnestic 

Anomic Anomic Amnestic Amnestic Dysexecutive 
aphasia: 

n/a Global Global n/a   

n/a Aphemia n/a Pure motor Pure anarthria Extra-Sylvian 
(transcortical 
motor) 

SMA, Supplementary motor area 

 

The first classification approach to be discussed is based on the onset time of 

symptoms and postulates four classifications: 1) hyperacute aphasia within 72 hours 
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after symptom onset, 2) acute aphasia within the first four to six weeks of onset, 

followed by 3) post-acute aphasia after six weeks and before 12 months and 4) 

chronic aphasia if symptoms remain beyond 12 months of symptom onset. 

According to this approach acute aphasias are not classified based on symptoms 

but merely based on the time interval post symptom onset to account for the 

symptom fluctuation in the first few weeks (Biniek 1997). This fluctuation is currently 

considered to result from many factors, including for example reperfusion 

(Croquelois et al. 2003) (see Chapter 4 for more detail). Spontaneous remission has 

been estimated to be as high as 30% within the first six weeks of onset (Ferro et al. 

1999). It is important to note, however, that the time frames to stratify hyperacute, 

acute, and chronic phases vary considerably in the stroke-aphasia literature. Acute 

and chronic aphasias are very different on many sociobiological levels. In terms of 

pathophysiology the functional deficit in acute aphasia extends beyond the 

structural damage due to an area of transient swelling. In the chronic stage 

compensation and reorganisation might lead to partial recovery of function. 

Neuropsychologically, the acute stage is often characterised by comorbid 

impairments of attention, affective symptoms and impaired perception of the newly 

acquired deficits. In chronic aphasia, compensation and reorganisation of cognitive 

processes are evident and most patients will have acquired coping strategies. In 

terms of social acceptance, the acute phase is characterised by an aphasic patient 

being perceived as ill and in need of support. Chronic aphasia on the other hand is 

often seen as a disability and patients are often exposed to socially inadequate 

reactions towards their impairments. 

The second, most commonly used, classification is based on an individual’s 

spontaneous speech output and verbal fluency to distinguish between fluent and 

non-fluent aphasias. Non-fluent aphasias are characterised by hesitant and 

haltering expression with great effort and five word length utterances on average 

(Huber et al. 1983; Kertesz 2007). In contrast to the time-locked classification this 

approach is applicable to the acute and the chronic phase and therefore allows for 

cross-sectional and longitudinal comparison. This method is also reflected in the 

pioneering work of Weisenburg and McBride (1935) where the authors popularised 

the distinction between expressive (often used as equivalent to non-fluent) and 

receptive (often used as equivalent to fluent) aphasia - as well as in the 19th century 

dichotomy of motor and sensory aphasias. All of these terminologies are still used 

today in the literature and the clinical arena. 
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The third classification follows from the Huber and Poeck’s school and is based on 

cluster analysis over the symptom catalogue (Huber et al. 1983). Four symptom 

complexes and four special forms of aphasia are classified using this approach. A 

cluster of symptoms whose association is more frequent than chance is referred to 

as a syndrome. The four main aphasia syndromes are: global, Broca, Wernicke and 

amnestic aphasia. Each of these syndromes is defined via a specific symptom 

pattern with intact or impaired naming, repetition, comprehension and fluency 

abilities. 

More anatomically-driven classifications distinguish between cortical aphasia (i.e. 

Broca/Wernicke aphasia) and subcortical aphasia (i.e. conduction and transcortical 

aphasias) (Nadeau & Crosson 1997); whereas other models distinguish between 

anterior and posterior lesion locations to determine the type of aphasia. 

 

In conclusion, aphasias can be classified based on; i) their duration (time after 

onset), ii) fluency, iii) their anatomical lesion, or iv) according to syndromes -with the 

latter being the most common. There are, however, patients that do not fit into 

specific taxonomies (due to mixed symptoms or neuroanatomically inconsistent 

lesions). Also, the usefulness of taxonomical classification is debatable (Caramazza 

& Badecker 1991; Caramazza 1984). First, it has been shown that in about 15% of 

Broca aphasia patients, Broca’s area was not actually damaged (Basso et al. 1985). 

Second, patients are transient between the groups in about 9% of cases after four 

months of onset and 16% of cases within seven months (Huber et al. 1983). Third, 

the main symptoms (i.e. agrammatism, paraphasias etc) are in themselves ill 

defined without a common diagnostic cut-off (Kolk & Heeschen 1990). Fourth, the 

taxonomy of aphasia according to main symptoms is strictly empirical and only 

reflects a statistically co-occurrence of a set of symptoms. Fifth, within the clinical 

setting and to establish therapy goals, a classification is not always necessary or 

useful, as the taxonomy does not imply to what extent these symptoms impact on a 

patient’s daily life. Nonetheless, for research purposes, clustering of homogeneous 

groups is important for between group comparisons. Also, in the clinical arena the 

use of descriptive syndrome complexes facilitates and accelerates the 

communication between professionals. 
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In summary, the usefulness of taxonomical classification has therefore to be 

considered in the context of the specific aim of a study, therapy plan or clinical 

setting. 

 

2.1.3 Comorbid conditions 

Suffering from aphasia entails physiological ramifications (i.e. medical and 

sensomotory problems), psychological, and psychopathological consequences. 

Clinically, aphasias are commonly accompanied by a variety of symptoms such as: 

neglect (inattention to one side within the intra- and extrapersonal space); 

hemianopsia (half field blindness); double vision (diplopia); anosagnosia 

(unawareness of illness); apraxia (impaired movement sequences); agnosia 

(impaired object recognition); amnesia (memory impairments); drowsiness; 

inattention (motor and sensory and affecting the intra- and/or extrapersonal space); 

altered affect (increased anxiety, increased frustration, post stroke depression) and 

poor impulse control; executive functioning deficits; and sleeping problems. In 

addition, altered affect needs to be considered in language studies - as depression 

can significantly impact on task performance and is a common comorbidity post 

stroke (with one third of patients suffering from depression within the year after 

symptom onset (Hackett et al. 2005; Sturm et al. 2004). Whilst some of these 

affective symptoms are transient others may remain for longer and reciprocally 

interact with aphasia symptoms. These factors should be carefully obtained and 

systematically investigated in future studies.  

 

2.1.4 Clinical profile of aphasia 

Stroke-induced aphasias resolve naturally within the succeeding months of 

symptom onset in approximately 30% of patients (Ferro et al. 1999). The exact 

nature of this recovery, its speed and duration, as well as beneficial and adverse 

contributing factors are not fully understood yet. Studies suggested that recovery 

may reach beyond the currently assumed time window and might still be 

measurable after two years (Nicholas et al. 1993). The current consensus is 

however, that maximal recovery occurs within the first three months and thereafter 

plateaus between six to twelve months with only minor subsequent improvements 

(Basso 1992; Lendrem & Lincoln 1985; Ferro et al. 1999; Enderby et al. 1987). 
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2.1.4.1 Incidence and prevalence 

Estimates of newly diagnosed post stroke aphasia (incidence) and estimates of 

diagnosed stroke-induced aphasia at a given point in time (prevalence) vary 

considerably depending on the applied diagnostic criteria of aphasia, chosen 

assessment battery, study design, sample size, and the investigated population (i.e. 

age restrictions due to catchment area, country specific etc.). It is estimated that 

between 20-38% of stroke patients will develop aphasia as a sequel to the stroke 

(Pedersen et al. 1995; Wade et al. 1986; Kauhanen et al. 2000; Brust et al. 1976; 

Engelter et al. 2006). When comparing several studies in the literature the range of 

patients developing aphasia seems even wider than the suggested 30% (see Table 

4). Furthermore, a sex shift for the occurrence of aphasia was reported which 

disappears once corrected for the stroke frequency between the sexes (Kertesz & 

Sheppard 1981). It should also be considered that aphasic syndromes fluctuate 

considerably within the first weeks after symptom onset and the first three months 

are considered the critical window where most improvements can be seen (Biniek 

1997; Enderby et al. 1987). Over the course of time the fluctuation reduces and 

after 12 months a change in classification is unlikely (Laska et al. 2001). The timing 

of assessment is therefore a critical factor to consider. 
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Table 4 Incidence of aphasia after stroke 

 Study 
duration 
(years) 

Recruited 
centres 

Total 
strokes 
seen 

Total no 
aphasia  

% 
Aphasics 
from total 
seen  

Methods 

 

(Brust et al. 1976) 3 1 850 177 20.8 Review of medical 
notes 

(Pedersen et al. 
1995) 

2 1 881 335 38.0 Stroke scale, CT 

(Bogousslavsky et al. 
1988) 

6 1 1000 307 30.7 Review of medical 
notes 

(Dickey et al. 2010) 4 12 3207 1131 35.3 Clinical and behavioural 
data 

(Hier et al. 1994) 3 4 1805 458 25.4 Clinical data, CT 

(McDermott et al. 
1996) 

2.5 1 456 39 8.6 WAB, CT or MRI 

(Engelter et al. 2006) 1 4 269 80 29.7 NIHSS, CT or MRI,  
Dopplers, ECG 

(Miceli et al. 1981) 10 1 390 241 61.8 Review of medical 
notes 

(Wade et al. 1986) 2.5 96 545 131 24.0 Review of medical 
notes 

(Enderby et al. 1987) ukn 1 117 19 16.2 FAST aphasia 
screening 

(Kauhanen et al. 
2000) 

1 1 106 36 34.0 WAB, CT, clinical data, 
psychiatric screening 

(Laska et al. 2001) 1.5 1 106 36 34.0 CT, stroke scale 

CT=computer tomography, WAB=Western Aphasia Battery, MRI=magnetic resonance imaging, NIHSS=National 

Institute of Health Stroke Scale, ECG=electrocardiogram, FAST= Frenchay Aphasia Screening Test 

 

2.1.4.2 Prognostic criteria  

Various demographic, neurological and medical factors have been discussed as 

contributors towards recovery. However, testing those factors in isolation can be 

difficult as they often interact or are not quantifiable with current measures (Code 

2001). Demographic, clinical, lesion and language factors have been discussed in 

the literature with varying conclusions regarding their positive influence on 

occurrence (Hier et al. 1994), severity (Basso et al. 1980), and fluency of aphasia 

(Brust et al. 1976; Basso et al. 1980; Basso et al. 1987). Other studies did not show 

significant influences (Pedersen et al. 1995; Habib et al. 1987; Kertesz & Sheppard 

1981). 

 

2.1.4.2.1 Demographical factors 

Age at symptom onset, sex, and educational level have all been considered as 

contributing factors. A common finding is that anterior lesions resulting in Broca and 
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conduction aphasia are more common in younger patients and posterior lesions 

resulting in comprehension deficits in older patients (Eslinger & A. Damasio 1981; 

Laska et al. 2001; Harasymiw et al. 1981; Obler et al. 1978; Ferro & Madureira 

1997; McDermott et al. 1996; Miceli et al. 1981). Age is a confounding contributor 

whereby young stroke patients have better chances of recovery (Kertesz & McCabe 

1977). The evidence is however not straight forward and some studies suggested 

that age might selectively affect distinctive aphasia types (Lendrem & Lincoln 1985; 

Kertesz & Poole 1974; Pedersen et al. 2004). Advanced age is further associated 

with comorbid deficits and the putative disadvantageous role for recovery might not 

be age per se. 

Sex differences have been previously reported by some authors - with women being 

less likely to develop aphasia as compared to men; however this association is 

mainly lost when the authors control for the occurrence of stroke between the sexes 

(Abu-Zeid et al. 1975). Otherwise no significant sex differences were described 

(Kertesz & McCabe 1977; Kertesz & Sheppard 1981; Pedersen et al. 2004; Engelter 

et al. 2006; Ferro & Madureira 1997; Miceli et al. 1981). Age and sex are therefore 

no independent predictors of recovery in most studies (Hier et al. 1994; Brust et al. 

1976; Engelter et al. 2006; Inatomi et al. 2008; Lazar et al. 2008; Pedersen et al. 

1995). The influence of educational levels has also been considered - with 

conflicting results - but there is significant evidence that education is not a strong 

predictor of recovery (Ferro et al. 1999; Miceli et al. 1981). 

 

2.1.4.2.2 Clinical factors: Post onset time, clinical comorbidities, clinical 

severity 

Recovery is maximal within the first six months, with most improvements seen in the 

initial three month after the stroke (Pedersen et al. 1995). Thereafter the curve 

plateaus with minor improvements still to be seen (Nicholas et al. 1993). Owing to 

the fact that until recently no objective clinical assessment of stroke severity was 

available only limited data is accessible on the influence of clinical ramifications. 

The introduction of the National Institute of Health Stroke Scale (NIHSS, see 

Appendix B) (Brott et al. 1989) across countries has changed this drastically. The 

NIHS scale provides a measure of clinical severity of stroke at three time points and 

assesses the level of consciousness, signs of neglect, sensory-motor functions with 

a very brief language test. The lower the initial clinical impairment (i.e. lower NIHSS 

score) the better the expected outcome (Inatomi et al. 2008). Further factors 

considered relevant for aphasia outcome are hypertension, diabetes, incontinence 
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and arterial fibrillation. However, their predictive value seems low (Bogousslavsky et 

al. 1988; Enderby et al. 1987). Further and more standardised studies are needed. 

 

2.1.4.2.3 Lesion factors: type, size and location 

A focal lesion (as caused by ischemic stroke) has less negative impact on initial 

severity and long-term recovery than diffuse brain damage (i.e. haemorrhage). The 

predictive value of lesion location and size is usually stratified according to aphasia 

types. The definition of lesion size is currently undergoing changes due to 

methodological advances (i.e. perfusion imaging and diffusion-weighted imaging 

(DWI) lesion delineation) that allow clinicians and researchers to investigate not only 

the core stroke but the brain tissue that has been affected by limited perfusion post 

stroke but may be salvageable (Sztriha et al. 2011). Lesion size can be measured 

using different imaging contrasts (computed tomography or MR-based sequences 

such as T1- weighted, diffusion-weighted or perfusion-weighted), all of which may 

yield different results. Generally, lesions restricted to one cortical area are 

associated with relatively good recovery compared to lesions extending into the 

underlying white matter and/or surrounding structures where less improvements are 

seen (Ferro et al. 1999). Whilst some studies reported on lesion size as a 

independent predictor (Kertesz et al. 1979; Pedersen et al. 1995), other did not 

replicate these findings (Laska et al. 2001; Inatomi et al. 2008; Murdoch 1988; Lazar 

et al. 2008). 

 

2.1.4.2.4 Language factors: initial symptom severity and aphasia type 

Initial severity of aphasia has been identified as an independent predictor (Ferro et 

al. 1999; Pedersen et al. 2004; Kertesz & McCabe 1977; Laska et al. 2001; Lazar et 

al. 2008; Kertesz 1988b); Initially more severe patients recover less (Kertesz & 

McCabe 1977; Laska et al. 2001). In a retrospective study, initial comprehension 

abilities were indicative of long-term outcome for articulation and comprehension 

alike (Lomas & Kertesz 1978). This study has to be considered carefully though as it 

was shown that naming and fluency recovery is often slower and incomplete 

whereas comprehension and repetition of simple tasks recover first (Ferro et al. 

1999). The aphasia type has often been shown to be associated with recovery 

(Kertesz & McCabe 1977; Ferro et al. 1999; Lomas & Kertesz 1978; Kertesz & 

Sheppard 1981; Kertesz 1988b). It is indicated that anomia and conduction 

aphasias have a better outcome, whereas transcortical and Broca aphasias and, 
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even more so, Wernicke and global aphasias were associated with worse 

prognoses (Ferro et al. 1999). This finding has to be carefully evaluated against the 

background of confounding variables, including age-related atrophy, subclinical 

dementia, and mortality rates (i.e. mortality may be higher in the older group and 

thereby drive the appearance of an age-related aphasia type). 

In conclusion, age and gender are not generally considered to be predictive for 

recovery - whereas the initial aphasia severity is. Also lesion location and extent 

should be considered carefully and the chosen delineation (i.e. is the penumbra 

included or excluded) should be made clear. 

 

2.2 Clinical assessment and diagnosis 

Aphasia is not seen as a uniform disorder and the assumed model of language 

functioning based on either clinical, physiological, psycholinguistic, or anatomical 

constructs, influences the choice of assessment (Benton 1967; Swindell et al. 

1984). Further factors have to be taken into consideration such as the intent of 

assessment for clinical or research purposes and the desired sensitivity and 

specificity of the assessment (i.e. screening vs. full battery). Today’s test libraries 

hold a wealth of aphasia assessments that are all based on different 

conceptualisations and each of them has their own advantages and disadvantages; 

some of which will be discussed here. Taxonomical classification for example is 

pivotal for research purposes but less relevant for clinicians and therapists as 

discussed in the conclusion to subchapter 2.1. A comparison of two main batteries 

shows that the Boston Diagnostic Aphasia Examination classifies only 60% of 

patients according to a syndrome category (the remaining patients are mixed), 

whereas the Western Aphasia Battery categorises every patient. This rigid 

categorisation may sometimes wrongly classify patients or attribute one patient to 

two different categories. Early approaches of European pioneers in aphasiology still 

provide the foundations of these instruments such as the paper test by Marie 

(1883), the hand-eye-ear test by Head (1926), and Geschwind’s repetition task 

(Geschwind 1971). All of these forerunners recognised the need for standardised 

assessments. A landmark study by Weisenburg and McBride assessed, for the first 

time, an aphasic group in comparison to a control group with a patchwork of 

standardised tools (Weisenburg & McBride 1935). Today’s test instruments are 

essentially refinements and extensions of the 1930’s approach tailored to test more 

recent theoretical and constructional standards, such as standardisation (i.e. 

normalisation against a healthy population and rigid application manuals), reliability 
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(i.e. reproducibility across settings and examiners), and construct validity (i.e. 

measuring what you want to measure). 

2.2.1 Theoretical explanations of language errors in aphasia 

Each school of thought has a different explanation to where the origin of language 

errors lies. For example, some believe it to originate from the inability to access the 

memory of words; others believe that the linguistic knowledge to produce and 

comprehend language is lost upon cerebral damage. Depending on this 

conceptualisation, clinical assessments would either test for memory functions or 

linguistic knowledge. It is hence pivotal to be aware of the underlying test theory of 

the assessments used. Hence, some theories on the cause on language errors in 

aphasia are discussed hereafter.  

 

Thinking disorder  

As we will see in the historical part of this chapter, aphasia was initially seen as a 

thinking/ memory disorder and was often considered to have originated from 

intellectual deficits (Kussmaul 1877). With Broca’s (1861) description this idea was 

however already lacking substance as it was thenceforth shown that patients could 

present with isolated aphasia and still be able to function in daily life with no 

intellectual impairments.  

 

Loss of linguistic knowledge  

This approach assumes that aphasia is a result of the loss of language knowledge, 

which can either affect isolated faculties of language (e.g., use of grammatical 

forms) or affect all input and output domains of language (production, 

comprehension, and reading/writing) (Goodglass & Kaplan 1983). A complete loss 

of language faculties may explain global aphasia and an isolated loss, for example 

selectively for syntax, may explain agrammatism and Broca’s aphasia (Berndt & 

Caramazza 2008; Bonhoeffer 1902). According to this theory, aphasia can only be 

cured when this knowledge is re-acquired. 

 

Access impairment  

The all-or-nothing approach of the previous concepts would not account for 

transient aphasia and anomia (word finding difficulties), which can be better 
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explained with an intermittent lack of access (Weigl & Bierwisch 1970). In this case 

the patients’ competence is intact but the execution is impaired (Berndt & 

Caramazza 2008). This can also be seen in the tip-of-the-tongue phenomenon in 

healthy people. When aphasic patients are given a choice of words similar to the 

target word they can most often reject the distractors and select the target word; an 

indication that the word concept is intact. Patients additionally benefit when 

semantic or phonemic clues are provided, meaning that when for example an object 

is shown and the patient cannot name it, it might be beneficial to provide semantic 

clues (i.e. words that are commonly used in combination with the object) or 

phonemic cues (i.e. proving the sound of the first syllable of the target word) (Kotten 

1997). Furthermore, it was suggested that it might be the automatic language 

processes that are impaired where, due to the high temporal demands of 

continuous speech production and comprehension, a swift access to linguistic 

knowledge is not possible. Syntax seems not to be the only domain where impaired 

access can be seen and this concept was further extended to non-lexical 

processing (Friederici 1985).  

 

Economy of effort 

Contrary to the concept of loss of language knowledge, this non-linguistic theory 

hypothesises that agrammatism/Broca aphasia is the result of the economy of effort, 

a strategy embraced by the patient (consciously or unconsciously) to adopt the 

difficulties he experiences in speaking. According to this theory, patients ‘learn’ to 

avoid difficult words or sentence structures and embrace an agrammatic but 

systematic style of communication. Empirical evidence however seems to contradict 

this hypothesis as for example, providing cues does not significantly improve 

agrammatism in patients (Goodglass & Kaplan 1983). 

  

Adaptation hypothesis 

‘The basic assumption here is that agrammatic (telegraphic) speech results from the 

strategic choice for elliptical expressions.’ p. 221, (Kolk & Heeschen 1990). This 

means that the patient chooses to avoid certain grammatical structures and words 

that would be problematic. Such avoidance strategies include, for example, low 

speech rate and a reduced variety of grammatical forms. This implies that the 

patient is aware of his/her deficits and draws on cognitive avoidance strategies 

(Salis & Edwards 2004; Kolk & Heeschen 1990). In this theory the assumption is 
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that syntactic competence is still given however the computational resources 

needed to create complex sentences are reduced.  

These above mentioned hypotheses (non-linguistic/ linguistic) tried to explain the 

emergence of aphasic errors. All hypotheses have in common that they stimulated 

experimental investigations. It is however important to be aware of these different 

conceptualisations when choosing an assessment as each test strongly depends on 

the underlying theory and will assess language and/or language impairment 

accordingly. Although some explanations seem more plausible than others, 

currently none of these hypotheses have been falsified (yet). 

 

2.2.2 Overview assessments 

Many different instruments are available to formally or informally assess aphasia. 

However, there is no test battery that can capture the complexity of a language 

disorder with a single number and every test has to be sensitive towards the 

assessed population (e.g., children vs. adults). Comprehensive standardised 

assessment batteries classify the type and severity of aphasias whereas all 

standardised tests (screenings, short assessments, informal assessments) examine 

the classical language domains (i.e. fluency, naming, repetition, comprehension, 

vocabulary). Some tests are only intended for screening purposes whereas others 

are designed for holistic assessments (see Table 5 for an overview of 

representative assessments, also see (Salter et al. 2006) for a review of screening 

tools). 

All batteries assess spontaneous speech (e.g., story telling), repetition (i.e. words to 

sentence level repetition), auditory comprehension (e.g., sequential commands), 

and naming (i.e. object naming); other (supplementary) dimensions may or may not 

be present, according to the theoretical orientation of the authors. The wide range of 

tasks will ensure that other disorders (e.g., motor speech problems, such as 

dysarthria) are diagnosed and determine the nature and severity of the language 

problem. Examiners are commonly advised to record suprasegmental features, 

such as prosody and affect even though these are barely officially tested. The 

differences between batteries are primarily their terminology, internal organisation, 

the tested modalities, and the level of linguistic complexity and item difficulty 

(Lendrem & Lincoln 1985; Spreen & Risser 2003; Kertesz & Poole 1974; Spreen & 

Strauss 1998; Pedersen et al. 2004; Lezak et al. 2004; Murray & Coppens 2011). 

The choice of test is at the discretion of the clinician or researcher and is commonly 
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influenced by clinical factors, such as the severity of the presented impairment and 

the post-onset time, but also by personal factors, such as the level of proficiency in 

assessments, the theoretical background and sometimes the country of origin of the 

examiner.  

Table 5 Commonly used language screening tests and assessments (taken from 
(Turgeon & Macoir 2008). 

 

 

2.2.3 In Detail: Western Aphasia Battery revised (WAB-R) 

In the Western Aphasia Battery revised (WAB-R) (Kertesz 2007), Andrew Kertesz 

employed a mathematical approach to classification of profile characteristics. A set 

of measurable objective, precise, and reproducible classifications is defined through 

an optimal set of aphasiac clusters (Kertesz & Phipps 1977). Based on this 

conceptualisation the WAB-R generates diagnostic classifications useful for the 

clinical and research arena alike. The test measures the patient’s level of 

performance as a baseline and a function over time, to provide a comprehensive 

assessment of the patient’s assets and deficits based on a rigid taxonomy and 

through determining the severity of aphasia. The test is aimed at English-speaking 

adults with acquired neurological disorders. 

The battery necessitates the use of additional materials (pen, watch, ball, book, 

matches etc.), which impacts on its usability in the clinical setting if the patient is not 

mobile and/or no access to an assessment room in the vicinity is given. The WAB-R 

7Classical and Contemporary Assessment of Aphasia and Acquired Disorders of Language

 1.4.2.     Comprehensive Examinations and 
Aphasia Batteries 

 In contrast to bedside and screening tests, the main pur-
pose of comprehensive examinations of aphasia is to pro-
vide an extensive description of language skills through 
the administration of tests designed to explore the different 
areas of language. 

Depending on the reference assessment model, the out-
put of a comprehensive examination may consist of a par-
ticular diagnosis of aphasia with a description of the severity 
of the defi cits in each language area (clinical–neuroanatomi-
cal approach), or identifying specifi c impairments affecting 
the functional processing components of language skills
(psycholinguistic approach). There are several classical com-
prehensive examinations and aphasia batteries. The most 
widely used in clinical and research settings in the English 
language are presented in Box 1.1. All these standardized test 
batteries comprise different subtests that assess all the dimen-
sions of language in order to diagnose and classify aphasic 
syndromes according to clinical localization-based classifi -
cations (i.e., Broca ’ s, Wernicke ’ s aphasia, and so forth). The 
PALPA ( Kay  et al. , 1992 ) is a comprehensive test battery 
directly derived from the cognitive neuropsychology approach 
to assessment. This aphasia battery consists of a set of resource 

materials comprising 60 rigorously controlled tests that enable 
the user to select tasks that can be used to identify impaired 
and intact abilities in an individual. The scoring and analysis 
of errors give the clinician a detailed profi le of language abili-
ties, which can be interpreted within current cognitive models 
of language. Compared to classical aphasia batteries, however, 
the versatility and fl exibility of the PALPA is lessened by the 
lack of standardization and validity/reliability measures.

    1.4.3.     Assessment of Specifi c Aspects 
of Language 

 Tests of specifi c aspects of language are often used to 
supplement comprehensive batteries but some of them are 
also administered for screening purposes. These tests, which 
usually include more items and more levels of diffi culty, may 
provide precise and detailed information about specifi c lan-
guage abilities. Their selection also depends on the underlying 
theoretical assessment model. For example, comprehension 
may be tested through the administration of specifi c tests 
focusing on semantics, syntax, commands, or narrative dis-
course (see Box 1.1). Other tests are available for measuring 
verbal expression, spoken and written naming, verbal fl u-
ency, reading, writing, gestural abilities, and so forth. 

Box 1.1     Most representative assessment instruments according to types of assessment  
Bedside and screening tests
●       Reitan, R.M. (1991). Aphasia screening test . Tucson, AZ: Reitan 

Neuropsychology Laboratory.
●         Whurr, R. (1996).  The aphasia screening test  (2nd edn). San 

Diego, CA: Singular Publishing Group.    

Comprehensive examinations
●         Goodglass, H., Kaplan, E.,  &  Barresi, B. (2001).  Boston

diagnostic aphasia examination . Philadelphia, PA: Lippincott, 
Williams  &  Wilkins.  

●         Helm-Estabrooks, N. (1992). Aphasia diagnostic profi les . 
Chicago, IL: Riverside Publishing.  

●      Kay, J., Lesser, R.,  &  Coltheart, M. (1992).  Psycholinguistic 
assessments of language processing in aphasia (PALPA) . Hove, 
England: Lawrence Erlbaum Associates. 

●         Kertesz, A. (2006).  Western aphasia battery revised . San Antonio, 
TX: Harcourt Assessment.    

Assessment of specifi c aspects of language
 Auditory and reading comprehension   
●      Brookshire, R.,  &  Nichols, L.E. (1993).  The discourse 

comprehension test . Minneapolis, MN: BRK Publishers.  
●    De Renzi, E.,  &  Vignolo, L. (1962). The Token Test: A sensitive test 

to detect receptive disturbances in aphasics.  Brain ,  85 , 665–678. 
●         LaPointe, L.L.,  &  Horner, J. (1998).  Reading comprehension 

battery for aphasia . Austin, TX: Pro-Ed.    

 Semantic processing   
●      Howard, D.,  &  Patterson, K.E. (1992).  The pyramids and palm 

trees test . Oxford: Harcourt Assessment.    

 Naming
●      German, D.J. (2000). Test of adolescent and adult word fi nding

(2nd edn). Austin, TX: Pro-Ed.  
●      Kaplan, E., Goodglass, H.,  &  Weintraub, S. (2001).  Boston naming 

test  (2nd edn). Philadelphia, PA: Lippincott, Williams  &  Wilkins.    

 Syntax
●      Bastiaanse, R., Edwards, S.,  &  Rispens, J. (2002).  The verb and 

sentence test . Toronto: Harcourt Assessment.    

 Writing
●      Hammill, D.D.,  &  Larson, S.C. (1996).  Test of written language

(3rd edn). Austin, TX: Pro-Ed.    

Assessment of functional communication
●      Frattali, C.M., Thompson, C.K., Holland, A.L., Wohl, C.B., 

 &  Ferketic, M.M. (1995).  Functional assessment of communication 
skills for adults . Rockville, MD: American Speech-Language-
Hearing Association.  

●     Holland, A.L., Frattali, C.M.,  &  Fromm, D. (1999).  Communication
activities of daily living  (2nd edn). Austin, TX: Pro-Ed.
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has two forms (assessment form and supplementary reading/writing form) and each 

is composed of four sections (spontaneous speech, auditory comprehension, 

repetition, naming, reading, writing, apraxia, visuo-

spatial/constructional/calculation), containing a total of 32 tasks (see Appendix C). 

A global score for each section can be calculated and cut-off scores are provided. 

The scoring of the first form provides the Aphasia Quotient (AQ), a measure of 

symptom severity that ranges between 0-100, whereby scores above an AQ≥93.8 

are considered as normal language function (Pedersen et al. 2004; Swindell et al. 

1984). Each of the individual subtasks tests a specific language processing stage or 

the integrity of stored information by confronting the patient with spoken and written 

words, sequential instructions and various objects as well as demanding eloquent 

and/or graphic output.  

As discussed before, clinical assessments are limited in their scope of complexity 

due to time limitations on the one hand and the lack of appropriate measurement 

scales on the other. The WAB-R does not test every instance of complex 

neurolinguistic models but provides a good overview of verbal and written 

comprehension and production.  

Spontaneous speech is assessed with two tasks designed to elicit conversational 

speech to measure functional communication, information content, speech fluency, 

lexical access, paraphasias and grammatical competence. 

Auditory comprehension is measured through three tasks by confronting the patient 

with relational prepositions (i.e. put the pen on the other side of the book), 

increasingly complex syntactical constructions and increased sentence length 

(yes/no questions and sequential commands). Yes/No questions are given with 

relations to personal orientation (i.e. ‘is your name Smith?’), environmental 

orientation (i.e. are the lights on in this room?) and more abstract general questions 

(i.e. ‘does it snow in July?’). This leads to increased syntactical complexity but 

semantically consistent difficulty. The auditory word recognition task detects 

category-specific loss of comprehension for objects, colours, numbers, letters, and 

body parts. This task also allows us to infer Gerstmann’s syndrome (finger agnosia, 

left/right confusion, acalculia, and agraphia) associated with an inferior parietal 

angular lesion (Gerstmann 1940). The auditory comprehension span task is 

designed to be the most difficult task within the WAB-R and crucial for diagnostics 

(Kertesz 2007). All test items are kept within the working memory span and are 

presented with increasing complexity.  
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The repetition task requires the patient to repeat single words and sentences of 

increasing length and complexity and varying probability (e.g., low and high 

frequency words such as pen vs. government). These items are also kept within the 

working memory span to reduce memory and executive deficit interferences. This 

task is used to distinguish between conduction and transcortical aphasia. The last 

three test items are to be highlighted. ‘Delicious freshly baked bread’ is intended as 

the oral agility item; Geschwind’s repetition item ‘no ifs, ands’ or buts’ requires only 

monosyllabic repetition and the final item contains all letters of the alphabet: ‘Pack 

my box with five dozen jugs of liquid detergent’. 

The Naming and Word Finding task only determines the severity but not the type of 

aphasia within this assessment. The naming of 20 objects (provided by the 

examiner as part of the assessment) measures the lexical access. The word fluency 

task (category) measures lexical access and components of executive symptoms 

(i.e. perseveration) along with lexical/semantic fluency. The final two tasks measure 

word finding abilities within a contextual setting (automatic lexical access in over-

learned sentences) and more spontaneous speech but within a controlled setting. 

Examples would be ’roses are red, violets are…?’ for the contextual setting and 

‘where can you buy stamps?’ for the spontaneous speech. The resulting aphasia 

syndromes according to the WAB-R are summarised and explained in Table 6 

together with their frequency. 

 

The WAB-R can be utilised to establish a variety of measures and determine the 

taxonomical group for each patient. First the raw scores for each subtest are 

compiled and composite section scores (spontaneous speech, auditory verbal 

comprehension, repetition, naming and word finding) are calculated according to the 

directions in the record form 1 (see appendix). All composite section scores are then 

scaled to comparable levels with scores ranging between 1 and 10 (note: it is note 

clearly stated by the author of the assessment but spontaneous speech is 

considered separate here for information content and fluency and is hence entered 

unchanged into further arithmetic). These scaled section scores are then added 

together to obtain a composite scaled section score (max 50). Assuming the 

percentage of normal function is 100% the cumulated section scores (max score 50) 

need to be multiplied by two (Kertesz & Poole 1974). The result is the Aphasia 

Quotient (AQ), which serves as an indicator of functional severity of speech 

disturbance (Figure 4). Likewise this score is used as numerical measure of 

improvement over time. 
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Raw scores are mainly used to distinguish fluent and non-fluent aphasias. Together 

with the scaled composite section scores these are expended to determine aphasia 

types (i.e. taxonomy). The AQ on the other hand is merely a measure of severity 

and cannot be employed to infer an aphasia type. The AQ can be stratified to obtain 

five severity groups, which were adopted within the present work. 

 

 

Figure 7 Rationale behind the revised Western Aphasia Battery raw scores, 
composite section scores (CSS), scaled composite scores (sCSS), and the Aphasia 
Quotient (AQ). The raw and composite scores are used to derive one of eight aphasia types 
(stratified by fluency); whereas the AQ is an indirect measure of five distinct classes of 
severity. 

 

For clarification on how to implement the scoring system I want to introduce a 

thought experiment at this point. To derive an aphasia type (i.e. taxonomical 

classification), one determines where a patient’s score falls within the range of each 

subtest criterion. For example, to arrive at a classification of Broca’s aphasia the 

fluency raw score must below 4. For the same patient the comprehension score 

must fall between 4-10, repetition must be less than 8, and the naming score must 

be between 7 and 9. Values of fluency represent the Fluency, Grammatical 

Competence and Paraphasias raw score; whereas values for comprehension, 
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Sec1on:!Spontaneous!Speech!(SS–CSS,!max!20)!
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Auditory)word)comprehension)(max)60))
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!
Sec1on:!Repe11on!(R–CSS,!max!100)!
Repe((on)(max)100))
!
Sec1on:!Naming!&!Word!Finding!(NaWF–CSS,!max!100)!
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repetition, and naming represent the scaled composite sections scores used to 

determine the AQ (see WAB-R manual for details). Patients might have a similar 

pattern for three out of these four measures but if they are without the range on one 

of the scales they will be classified with another aphasia type. If one were to 

consider a similar patient to the example above but only assume that the naming 

section score falls below 7, that patient would derive a global aphasia type. Likewise 

patients with different recovery patterns might present with a similar number in their 

AQ scores whilst the underlying recovery within each section might be different. 

This however is mostly relevant when investigating the change in scores rather than 

the absolute scores at baseline and follow-up. 
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Table 6 Aphasic syndromes classified within the WAB-R and their incidence 
within the standardisation cohort from Kertesz (1977). 

Fluency Syndrome Classification % 

Fluent 

Normal or 
excessive 
quantity of 
speech; 
paraphasic 
substitutions, 
circumlocutions, 
jargon, and 
echolalia could 
be features 

Wernicke Characterised by impaired comprehension and 
paraphasias; at times jargon, circumlocutions, 
and unawareness of speech deficit 

15 

Transcortical 
sensory 

Characterised by poor comprehension but 
relatively good repetition and fluent 
spontaneous speech 

7 

Conduction Characterised by good comprehension and 
poor repetition, with phonemic paraphasias 
and word retrieval difficulties; at times, groping 
and verbal approximations 

9 

 

 

Anomia Word-finding difficulties; impairment or inability 
to recall words 

29 

Non-fluent 

Slow effortful 
speech; ability 
to initiate 
speech, 
quantity, and 
prosody are 
affected 

Broca Primarily expressive, characterised by scant, 
hesitant, effortful, agrammatic and paraphasic 
spontaneous speech; at times, slightly better 
repetition, relatively good comprehension and 
often, verbal apraxia. Reading aloud is poor, 
but reading comprehension is often good, 
writing is affected similar to speech 

17 

Global Severe involvement of both expressive and 
receptive language, characterised by 
stereotypic repetitive utterances, lack of 
gestural, written or oral communication, and 
almost entirely absent verbal comprehension 

16 

Transcortical 
motor 

Characterised by reduced spontaneous 
speech but relatively good comprehension and 
repetition 

4 

 Isolation/ 

mixed 
transcortical 

Results from the isolation of the speech area 
from other association areas of the brain; only 
repetition remains and comprehension and 
output are impaired 

3 

 

It should be noted here that the WAB-R does not assess lexical-phonemic fluency 

most commonly assessed with generating lists of words that share the same initial 

letter (for Anglophone assessments this is typically a list of words for the letters F, 

A, and S as these are the most common initial letters of the language). Fluency of 

speech is sensitive to socioeconomic demographic factors with a gender effect past 

the age of 55 years and a general decline in both sexes over the age of 70 years; 

an effect that seems to affect semantic fluency (e.g., list of animals) more than 

phonemic fluency (e.g., list of F words) (Benton et al. 1994; Troyer 2000). These 

deficits are not sufficient to classify a type of aphasia (Kertesz 2007; Kreindler et al. 

1980). Lexical-phonemic fluency is more difficult than semantic categorical fluency 
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for most people but this was shown to be inverse for neurodegenerative patients 

(Lezak et al. 2004). Given the different nature and potentially different anatomical 

correlates for both fluency tasks we added a lexical-phonological task to the 

assessment (FAS word lists).  

The WAB-R serves to test theoretical characteristics sufficiently (Spreen & Risser 

2003), but does not recognise qualitative aspects of the patient’s performance (i.e. 

visual search in the room, gestures, or suprasegmental language aspects). The 

WAB-R has been subjected to three main criticisms. The first is the intermittent 

diagnostic mismatch between classifications made by clinicians and classification 

based on the assessment (G. Davis 1993; Swindell et al. 1984); disparities that may 

be related to the neglect of qualitative behavioural observations. Second, the WAB-

R has a rigid taxonomical system that does not allow for mixed aphasias (Spreen & 

Risser 2003). Third, the validation was obtained from veterans, a population where 

the sex ratio is heavily weighted towards men of certain age and the possibility of 

some degree of post-traumatic impairments cannot be excluded. 
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CHAPTER 3 ANATOMY OF LANGUAGE 

‘Anatomy is destiny’ 

(Sigmund Freud) 

 

The anatomy of language is intimately related to the study of the loss of language 

(i.e. aphasia as defined above). The classical clinico-anatomical approach infers a 

functional specialisation of an area by examining the deficits that follow damage to 

this area (co-localisation of function); however, this approach was later criticised as 

not inferring the localisation of function but rather picturing the location of deficits. 

The quest for language in the brain was hence driven by the loss of language and 

aphasiology (study of aphasia) and has seen the rise and fall of many theories. To 

gain an understanding of the development of theories and methodologies in 

language research it is important to understand where the field has come to at the 

present day and how the current ideas are still influenced by early theories. An 

extensive review is beyond the scope of this work and only a selective review of 

important contributions (to the field in general or stroke-induced aphasia in 

particular) will be discussed (for a review see Tesak (2008), Finger (1994), and 

Code (2010). 

 

3.1 Early Theories (Prior to the 19th century) 

The 19th century is often considered the birth period of aphasiology thanks to the 

seminal contribution of Broca (1861) and Wernicke (1874). A link between brain 

damage and loss of language function was, however, already suggested in ancient 

Egyptian (Edwin Smith Surgical Papyrus, written in the 17th century Before Christ, 

and containing the earliest reference to the brain in human records) and Indian 

(Samhitas) medical writings (Finger 1994; Kandel et al. 2000). These single case 

reports are based on head trauma patients that presented with some sort of 

language difficulties. This led to the vague assumption of the importance of the 

brain in language. Whilst the Dark and Middle ages did not contribute much to the 

science of aphasiology, various patients have been reported and theories have 

been developed from the renaissance onwards (Critchley 1970).  
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Language was considered a faculty of memory, located within the fourth cerebral 

ventricle (Tesak & Code 2008). Aphasia was consequently considered a memory 

disorder caused by damage (e.g., exceeding phlegm, injury) to the fourth ventricle. 

A seminal contribution was published by Johannes Schenk von Grafenberg in the 

16th century where von Grafenberg i) rejected the medieval ventricular theory (but 

not the idea that language belongs to the memory faculty), ii) compiled 16 case 

reports of language disorders and iii) realised that aphasia is not a speech disorder 

(motor impairments of the speech apparatus) but a language disorder (central 

language functions) (Tesak & Code 2008). 

Before the end of the 17th century, publications were only brief reports and deficient 

of essential details. This was to change with the early detailed reports of stroke-

induced aphasia (Finger 1994). 

The 18th century is of central relevance to the development of aphasiology due to i) 

the realisation that there are different aphasia types and ii) the first 

conceptualisation of aphasia as a lexical memory problem rather than a general 

memory problem and iii) the recognition of the clinico-anatomical association 

between stroke and aphasia as published by Morgangi (1761). Gesner’s language 

amnesia paper (1789) was the most detailed contribution thus far and was centred 

on a patient that today’s classification would characterise as Wernicke-type aphasic 

(i.e. fluent speech with neologism and non-sense words). Gesner reported the 

isolated language deficits with other higher cognitive functions being intact and 

therefrom concluded that language was a selective disorder of memory (Tesak & 

Code 2008). 

In conclusion, prior to the 19th century language was already considered a brain 

function and aphasia, even though not defined as such yet, was described in a 

series of patients. The clinico-anatomical observations already acknowledged the 

link between head trauma and cerebrovascular events with aphasia and language 

still considered a memory function (located in the fourth ventricle). The favourable 

politico-medical environment and methodological advances laid the foundations for 

the great discoveries of the 19th century that were about to change our 

understanding of aphasia profoundly. 
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3.2 19th century 

This century is marked by i) the serious systematic study of aphasia, ii) the first post 

mortem accounts in an attempt to map language in the brain, which cumulated in 

the birth of aphasiology as a dedicated field of science and established the left 

hemisphere as the language dominant half of the brain. The different theories are 

described in some detail below. 

 

3.2.1 Localisations theories 

Craniology (later called phrenology by Gall’s student Spurzheim) is a topographic 

doctrine coined by the German physician and anatomist Franz Joseph Gall (1764-

1828). This school established the hypothesis that cranial prominences are 

indicative of underlying brain development and that these specific cortical areas 

expand with superior functioning. Gall mapped 27 faculties distributed over the skull 

and located language behind the orbit (Figure 8B). The reasoning behind this idea 

being that verbal memory was located in the frontal lobe and people with excellent 

verbal memory abilities would develop this particular brain region more extensively 

than others, which in turn would result in the orbits being pushed forward (e.g., 

bulging eyes) (Zola-Morgan 1995). 

Although phrenology is no longer given serious consideration by the scientific 

community and often seen as pseudoscience, it however cannot be neglected that 

at a time where in vivo neuroimaging was not yet available, Gall’s intent to 

associate circumscribed cranial regions with cognitive function was very influential 

and established the foundations of localisation theory, the most influential theory 

that was to drive neurosciences and psychology to the present day (Temkin 1947; 

Finger 1994; Eling 1994; York 2009).  
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Figure 8 Phrenology - Franz Gall and an original skull 

A Franz Joseph Gall examining a skull (from (Haymaker 1953)) B Skull with Gall's hand-
written functional areas (from (Wolfgang & Michael 2008)) from Gall’s collection of 300 
human and 120 cat skulls. 

Seeking more validated methods the phrenologist-turned experimental scientist 

Jean-Baptiste Bouillaud amassed a total of over 500 cases of language pathologies 

(Finger 1994), introducing for the first time a multi subject language study. Owing to 

his and other experiments in animals and lesion observations in man, language was 

already ascribed to the anterior lobes (Head 1926; Finger 1994). This assumption 

was countered with reports of double dissociation, where damage to the frontal 

lobes did not result in language deficits and likewise damage to other lobes did. 

Bouillaud took up this challenge and proposed one of the most famous bets in 

neurosciences: ‘Herewith I offer 500 francs to anyone who will prove me with an 

example of a deep lesion of the anterior lobes of the brain without a lesion of 

speech’, which he paid for in 1865 when Velpeau presented an eloquent frontal lobe 

tumour patient (Finger 1994). 

 

The ‘revolution’ for neurolinguistic sciences was looming in the 1860s when Paul 

Broca, in reaction to the debate, emphasised the superiority of clinical lesions over 

cranial protrusion examinations in the quest for functional brain regions and 

consolidated the localisationist approach (Figure 9C,D). In this approach a lesion to 

one area will cancel the functions executed by this area. In his five years of active 

contributions to aphasiology Broca reported the post mortem examination of one of 

the most famous cases in neurosciences, Monsieur Lebourgne also known as ‘Tan’ 

(only syllable the patient was able to utter). Broca’s patient presented with isolated 

language deficits (not able to speak but understand) and at autopsy a critical region 

for language production was identified within the lateral aspect of the left inferior 

A B 
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frontal gyrus close to the Sylvian fissure. Broca herewith confirmed Bouillaud’s 

localisationist claim of the frontal lobe harbouring language. After having studied 

another eight patients with a similar lesion and symptoms, Broca formulated the 

theory of language lateralisation in 1864, ascribing articulated speech to the left 

hemisphere (Kandel et al. 2000; Tesak & Code 2008). The superiority of the left 

hemisphere was also supported, in Broca’s view, by neurodevelopmental studies 

demonstrating that the sulci of the left hemisphere formed before the right (Anon 

2003; André Lecours, Lhermitte, et al. 1983b). 

Gustave Dax, on behalf of his father Marc Dax, claimed the primacy of the 

formulation of the left-hemispheric dominance theory but historically lost the conflict 

owing to Broca’s already established status amongst the medical profession (Finger 

1994). Broca’s aphasiology had resonance in the UK and attracted famous 

followers such as John Hughlings Jackson, William Ogle, Henry Bastian, Frederic 

Bateman and Byron Bramwell, which all added to aphasiology (for details see 

(Tesak & Code 2008)).  

 

Figure 9 Three schools of thought of brain function and consequences of cortical 
lesions 

 A,B Holistic approaches believe function is homogeneously distributed across the cortex 
and a lesion to one region will affect other regions to the same extend. C,D Localisationists 
consider a function to be carried out by a discrete independent cortical region. If this region 
is damaged the function is lost. E,F Associationist believe some areas to be interconnected 
and commonly provide a certain function. A lesion to a cortical area will hence affect the 
associated areas but leave others intact resulting in partial dysfunction (Catani & Thiebaut 
de Schotten 2012). 
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3.2.2 Holistic approach 

Before the localisation theory was established, the holistic approach prevailed 

between the 1820s-70s. In an attempt to map and isolate the location of functions 

within the brain the French physiologist Flourens systematically removed Gall’s 

functional areas in the animal brain (Kandel et al. 2000). It should be considered at 

this point that from today’s perspective early ablation and stimulation methods were 

rather crude and not suited to the introduction of focal brain damage (Riese & Hoff 

1951). Flourens’ conclusion did not support a phrenological approach and he 

claimed that a lesion to a specific area would affect the rest of the brain 

homogeneously, a principal called cortical equipotentiality (Tesak & Code 2008; 

Kandel et al. 2000) (Figure 9A, B). 

 

3.2.3 Associationist studies 

Theodor Meynert laid down the foundations of the first theory of language when he 

formulated his fibre theory and postulated the dichotomous brain, with the rostral 

part executing motor and the caudal part sensory functions (please see Chapter 1). 

Neither agreeing with the mosaic of phrenological functional areas nor the opposing 

view that mental functions are homogeneously distributed across the cortex, 

Meynert’s student Carl Wernicke took a combined approach. He believed core 

functions to be localised within focal areas (i.e. the perirolandic regions had been 

described as motor and sensory areas); whereas higher cognitive functions are 

distributed within large-scale networks (Figure 9E). Wernicke adopted and 

integrated his mentor’s theories into his idea of a connected language network, 

when he described a language-relevant comprehension locus in the temporal lobe 

(previously described by Meynert) and developed the first (associationist) 

anatomical model of language (Figure 10A). This was to become the classic 

doctrine in aphasiology: 

‘The whole area of the first convolution circling the Fossa Sylvii together with the insular 

cortex serves as speech centre; and thus the first frontal convolution, because it is a motor 

area, is the centre of motor images, the first temporal convolution, because it is sensory, 

the centre for sound images; the fibrae propriae joining in the insular cortex constitute the 

connecting psychic arc’.  

(1874, translated in (Tesak & Code 2008)) 

 

Within this ingenious brief paragraph Wernicke defined the anatomy of language for 

the next decades and introduced the pivotal concept of a connection between two 

distant language areas (according to Wernicke mainly relevant for language 
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acquisition), which was later claimed to be the arcuate fasciculus by Dejerine. 

Wernicke further established the fact that aphasias presented with linguistic 

differences and considered four types of aphasias based on his model. His name 

later became eponymous with sensory aphasia (a temporal lesion resulting in a loss 

of word concepts and hence fluent but non-sense talk) and associated with 

conduction aphasia (disconnection between Broca and Wernicke areas).  

 

Figure 10 19th century anatomical associanists language models based on clinical 
observations  

A Wernicke's model of language production is the first associanists anatomical model 
including a as the central terminal of the acoustic nerve and b as the centre for motor 
imagery in the inferior frontal lobe. For reading and writing the model was extended to a 
centre for graphic motor imagery in the middle frontal gyrus and a centre for visual letter 
imagery (not shown here). B Charcot's cortical localisation of aphasia, agraphia and word 
deafness/blindness (1889; adopted from (Tesak & Code 2008)). C Dejerine's language zone 
encompasses the frontal, temporal and inferior parietal lobe as well as specialised areas. D 
Bastian's diagram showing the approximate sites of the word centres, two of which are 
receptive and two are expressive in nature. Solid lines represent customary routes for stimuli 
whereas dotted lines occasional routes (modified from (Bastian 1897)). 

The Meynert-Wernicke model, even though far ahead of its time from today’s 

perspective, was critiqued for having made the mistake ‘of plotting the centres in 

specific areas of the brain. The localisation of elementary functions of language is 
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not mature enough for this’ (Kussmaul 1877, translated in Tesak 2008). The next 

100 years would see a wealth of neuropsychological and neuroanatomical models 

of language functions.  

One such approach was Lichtheim’s expansion of Wernicke’s model by the 

dimension of a concept area conveying meaning rather than considering language 

to be a pure sensorimotor function. Lichtheim postulated a connected concept-

motor-sensory language system and described corresponding clinical symptoms for 

all possible disconnections within this system (see Chapter 1 and Chapter 2 for 

details). He added transcortical motor and sensory aphasias to the Broca-Wernicke 

model. Lichtheim did not anatomically localise the concept area but considered it to 

be ‘a common function of the entirety of sensory areas instead’ (1885, in Tesak & 

Code 2008); a view that was to be revisited by Norman Geschwind in the 20th 

century. 

The relevance of further language areas beyond the receptive-expressive regions 

became more evident and subsequent studies tried to map them. Charcot, thought 

giver to students such as Freud, Marie and Dejerine, agreed with Broca that the 

motor language centre and further suspected lesions of the middle frontal gyrus 

would result in agraphia, lesions to the superior temporal gyrus (STG) would 

produce word deafness and a lower parietal lobe lesion would cause word 

blindness (Figure 10B). Dejerine (1885), diverging from his mentor’s approach, 

defined a language zone, an aggregation of specialised cortical areas (Broca’s, 

Wernicke’s and the angular gyrus) respectively responsible for production, auditory 

and written comprehension (Figure 10C).  

In the UK, Bastian (1898) had anticipated Wernicke’s findings but did not publish his 

theories until 19 years later and hence was credited with limited recognition. Bastian 

produced one of the first connectional diagrams of the brain where he aimed to 

integrate speech, auditory and writing areas with the motor pathways of the hand 

and tongue, a model that closely resembles Charcot’s model (Figure 10D). Bastian 

can also be credited for his detailed description of word deafness and word 

blindness (Bastian 1887). Aphasia, according to Bastian, is the result of 

hemispheric white matter damage and whilst linguistic functions are impaired other 

cognitive domains remain intact. In normal language function, he believed in the 

interaction between four language areas, two receptive and two expressive in 

nature. Bastian is nowadays primarily known for his description of word deafness 

and word blindness rather than his aphasia work. Anecdotally, he became the 

object of disparagement after claiming a precise circumscribed lesion in one of his 
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patients that was then found to have damage within the entire left middle cerebral 

artery territory. Interestingly, Bastian attributed aphasia recovery to right 

hemispheric plasticity: ‘In many cases where recovery from different kinds of 

speech defects occurs (the nature of which I need not now particularise) we are 

compelled to assume that centres and commissures in the right hemisphere 

gradually undergo further organisation, so as to compensate for the destruction of 

corresponding structures in the left hemisphere.’ p. 85-86, (Bastian 1897) 

 

One famous opponent of the associative Wernicke-Lichtheim model was Sigmund 

Freud, who developed his own (non-anatomical) model and classification system. 

Freud’s (1891) objection was that i) clinically patients often present with a spectrum 

of deficit rather than complete loss of language and ii) that the model predicts forms 

of aphasia (i.e. isolated loss of repetition) that has not been seen and are unlikely to 

exist. 

Many neuroscientists followed the associationist approach (i.e. Kussmaul and 

Charcot), but their contributions only marginally expanded or modified the classical 

Wernicke-Lichtheim model and some were reluctant to anatomically anchor the 

localisation of language/aphasia. 

In conclusion, linguistic neurosciences in Europe have seen confrontation between 

three prevailing schools of thought: i) localisationists, ii) holistics and iii) 

associationists. These schools disagreed on i) where language is located in the 

brain (discretely localised within the frontal lobes, homogenously throughout the 

brain or organised in parallel networks) and ii) which methods are most adequate to 

study brain functions (clinical observation and case studies or repeatable 

experimental animal studies). Regardless of the affinity between all protagonists, a 

tremendous contribution to the understanding of the clinico-anatomical relationship 

has been provided and profoundly redefined our understanding of the anatomy of 

language.  

 

3.3 20th century 

The evolution of aphasiology came to an abrupt halt during World War II that led to 

a scientific shift from central Europe to other countries (e.g., US) and the emphasis 

transferred from basic sciences to rehabilitation owing to the large number of brain 

injured aphasic soldiers in the aftermath of the war. This development necessitated 

elaborated assessments, which were provided by Weisenburg and McBride (1935). 
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They were the first to provide standardised tests and a new approach to working 

with patients, yet their assessments were very much aligned to previous 

approaches (spontaneous production, naming, repetition, comprehension).  

Systematic clinico-anatomical data were accumulated by Luria who published his 

monograph Traumatic Aphasia in 1947 (English translation 1970), a compilation of 

data acquired from war injuries. He took an intermediate position to the 19th century 

schools and associated damaged tissue with loss of function and applied his own 

aphasia taxonomy: 

‘There is no doubt, however, that the archaic concepts [late 19th century ideas] used in 

present-day clinical practice are grossly obsolete. No one thinks any longer that “centres” 

of sensory speech and motor speech really exist, least of all, a “centre of notions”. Nor can 

anyone nowadays believe that the defect underlying conduction aphasia is an anatomical 

disruption between the “centres” of sensory and motor speech. In short, the theoretical 

approach to the forms of aphasia just mentioned can no longer withstand criticism’.  

p. 130, (Luria & Hutton 1977) 

 

Luria believed that only investigation from the inside (i.e. post mortem) or from the 

outside (i.e. observing the symptomatology) was not sufficient and needed the 

intermediate step of systematic clinico-psychological assessment (Luria & Hutton 

1977). Anatomically, Luria highlighted the perisylvian region (inferior frontal, 

superior temporal and superior marginal/ angular gyrus) with an extension to the 

superior frontal lobe.  

The associationism revival came in the 1960s with the American neurologist 

Norman Geschwind, who reinvestigated the Wernicke-Lichtheim model and 

advanced the model by highlighting the disconnection syndromes. Geschwind’s 

efforts on the clinical description of disconnection syndromes attracted many 

scholars in subsequent decades, who further complemented his work (Mesulam 

1990; ffytche & Catani 2005; Catani & ffytche 2005) (Figure 11). According to 

Geschwind many methods (animal models, intraoperative stimulation, brain 

tumours, head trauma) have been used to study language but all with inherent 

limitations; to him the best method was the stroke model even though ‘fully suitable 

cases of this type are not common’ yet it has the advantage of 100 years worth of 

experience and delimited areas of brain damage (Geschwind 1970). Geschwind 

conceptualised the significance of the inferior parietal region as secondary 
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(intermodal) association area3: ‘The situation in man is not simply a slightly more 

complex version of the situation present in the higher primates but depends on the 

introduction of a new anatomical structure, the human inferior parietal lobule, which 

includes the angular and supramarginal gyri, to a rough approximation areas 39 and 

40 of Brodmann’ (p. 273, (Geschwind 1965b)). To Geschwind this area is the 

intermodal integration area of the brain where all other association cortices project 

to and the middle and posterior region of the superior temporal gyrus (Wernicke’s 

area, roughly BA22) reciprocally projects to the angular gyrus (indicated as 

‘parietotemporal’ cortex in Figure 11).  

 

Figure 11 Neoclassical language network  

Schematic clinico-neuroanatomical model of aphasia where bold blue highlights cortical 
regions and light blue describes the most commonly associated function of these areas. Red 
represents the aphasias and where a disconnection can be assumed (red dotted lines). 
Black lines indicate connections between cortical language areas (blue). Red lines indicate 
neural lesions with corresponding aphasia types. SMA, supplementary motor cortex; B, 
Broca; W, Wernicke, TMA, transcortical motor aphasia; TSA, transcortical sensory aphasia; 
AP, aphemia; DYS, dysarthria; PWD, pure word deafness; CA, conduction aphasia. The 
right hemisphere (not shown here) is relevant for communicative impact of spoken language 
(emotional-attitudinal prosody and paralinguistics processes) in this model. A right-
hemispheric disconnection will hence results in aprosodia. Modified from (Mesulam 1990).  

                                                
3 Secondary association area as defined by Geschwind is an evolutionary new area 
receiving most afferent input from adjacent association areas with few thalamic 
connections. 
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Wernicke can be considered as the first to associate the connection between 

Broca’s and Wernicke’s areas with language function. Initially, however, he believed 

both regions are connected through fibres of the external capsule (1874). It was von 

Monakow who first identified the arcuate fasciculus as the pathway interconnecting 

Broca’s and Wernicke’s area, a view later adopted by Wernicke (1908). Damasio 

and Damasio (1980) investigated CT imaging from six patients and concluded that 

the arcuate fasciculus is consistently lesioned but mostly together with the left 

cortical regions of the auditory complex, the insular region and the supramarginal 

gyrus. 

The complexity of this language network increases when further considering 

reading capacities that require a connection to visual areas and right hemispheric 

linguistic processes (e.g., prosody, affect) that depend on information transmission 

via the corpus callosum. 

 

In conclusion, research in the 20th century re-defined not only the structural and 

functional anatomy of the language network but also demonstrated that aphasiology 

is a field of research at the intersection of multidisciplinary neurosciences including 

neurology, cognitive psychology, linguistics, physiology and speech pathology. 

 

3.4 Beyond Broca’s area and the arcuate fasciculus 

Inconsistencies in the classical clinico-anatomical model have been highlighted ever 

since the first language model was proposed (Bateman 1870; Poeppel & Hickok 

2004; Luria 1958; Sondhaus & Finger 1988) and problems with the identification of 

‘Broca’s area’ permeate the history of aphasia beginning with the notion that by the 

time of death Leborgne was aphasic for already 21 years which would have 

changed the appearance of his lesion and the observation that patients with a lesion 

to Broca’s area often present without the corresponding symptoms or likewise a 

remote lesion can cause these symptoms (Basso et al. 1985; Dronkers 2000; 

Murdoch 1988; Basso 2000; Fridriksson et al. 2007; Alekoumbides 1978). 

One possible explanation accounting for unusual cases and second-stage recovery4 

was introduced by von Monakow (1905) in the form of diaschisis5 together with his 

                                                
4 First stage recovery accounts for the recovery from acute physiological effects, 
such as haemorrhage, cellular reactions and chemical alternations. Second-stage 
recovery reaches well into the post acute and chronic stages. 
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claim that ‘gyral regions that have been associated with aphasic language disorders 

have been considered too narrowly by far up to now, and namely as far as the long 

association fibre tracts, commissures, and their areas of destination and origin 

respectively’ (Tesak & Code 2008). Supporting evidence was later stated by Mohr 

et al. (1978) who provided a comprehensive review of cases since the year 1820, 

taking into account neuroradiological, clinical and neuropsychological material and 

concluding that a Broca-like aphasia can result from a lesion to any part of the 

upper division of the middle cerebral artery, this includes the operculum, the inferior 

parietal lobe (ILP), the insula and subcortical structures (see Figure 20 in Chapter 

4). Von Monakow also realised that stroke lesions albeit often having a well-defined 

core extend far beyond the visible borders of the lesion, a phenomenon today 

referred to as the lesional penumbra. This assumption was also brought forward 

against Broca who never performed cross-sections of his post mortem specimens 

(Marie, 1922). Thanks to non-invasive neuroradiology methods including 

computerised tomography (CT) and magnetic resonance imaging (MRI), the famous 

case of Broca was re-examined and it was shown that the lesion extended well 

beyond ‘Broca’s area’ into the deep white matter (Figure 12) (Signoret et al. 1984; 

Dronkers et al. 2007). Aphasiology may have been very different if the method of 

fibre dissection would have been applied to early investigations.  

                                                                                                                                     
5 Diaschisis describes a long-distance effect where a dysfunction of brain structures 
in other vascular territories (i.e. remote to the lesion), that are functionally linked 
with the lesioned region, is caused by imbalance of inhibitory or excitatory 
neurotransmission (Hagoort 2005; Stemmer & Whitaker 2008; Fadiga et al. 2006).  
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Figure 12 Neuroradiological images of Broca's famous patient 

Both methods showed the lesion dramatically extending subcortically. The upper panel 
shows the CT scans; the lower panel the MR scans of the same brain. IFG = Inferior frontal 
gyrus, GM = Grey matter, STG = Superior temporal gyrus. Modified from (Signoret et al. 
1984; Dronkers et al. 2007). 

The dispute over the definition of Broca’s area as a motor (Broca) or sensory area 

(Bastian 1887) or neither (Flechsig), together with the accumulation of “unusual 

cases” went so far that some claimed Broca’s region may not be language-specific 

at all (Hagoort 2005; Fadiga et al. 2006). Other proposed candidate functions of 

Broca’s included hierarchical structure building (Friederici 1985), semantic retrieval 

(Badre & Wagner 2002), and selection of competing alternatives (Thompson-Schill 

2005). 

 

In conclusion, the anatomical areas and their associated functions have expanded 

over the centuries. According to Broca the posterior third of the inferior frontal gyrus 

CT

Coronal cut at 44 mm: lesion to the precentral 
gyrus, operculum, insula,  STG (bevore Hesch’ls 
gyrus)

Coronal cut at 32 mm: lesion affecting the IFG 
extensivley.

MRI

Corical lesion to the inferior frontal lobe with  
further softenenign of adjacent cortical areas 
described by Broca (1861).

Lesion extends into GM of IFG, inferior parietal 
lobe and anterior superior temporal lobe with 
further subcortical involvement (claustrum, 
putamen, globus pallidus, caudate head, internal 
capsule) and vast white matter damage (i.e., fronto-
parietal network)
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is associated with articulated speech, whereas current research indicates that i) an 

extended network serves language functions and that ii) a more complex clinical 

presentation can be seen upon infarction of Broca’s area. Tesak and Cohen (2008) 

concluded their historical review with the notion that ‘Broca’s area and its syndrome 

endure into the twenty-first century, and so do some of their mysteries, despite the 

ingenious methods we can devise to probe the anatomy […] and the experimental 

tasks we can invent to explore’ the resulting impairments. Some of these ‘ingenious’ 

methods will be discussed below. 

 

3.4.1 Cyto-, receptor-, and myelooarchitecture  

Cytoarchitectonics 

Classically, sections of brain tissue were sliced, stained up and then visually 

investigated for distinctiveness in their grey matter (GM) thickness, form and size of 

areas, number of horizontal laminations, relative laminae thickness, arrangements 

of cells and cell types (e.g., size), cell density, and staining affinities. It was later 

assumed that cytoarchitectonic areas are functionally discrete in 

electrophysiological studies as well (e.g., (Luppino et al. 1991)). A neat overlap was 

shown for basic sensorimotor functions but not for higher cognitive functions. 

Broca’s area (sensu strictu) largely coincides with the cytoarchitectonic Brodmann 

areas (BA) BA44/45 and BA47 or macroscopically the opercular, triangular and 

orbital part of the inferior frontal gyrus (Amunts et al. 1999; Aboitiz & Garcıá 1997; 

Lieberman 2002; Gannon 2010; Stemmer & Whitaker 2008; Amunts & Zilles 2012) 

(Figure 13A). Wernicke’s area is classically located at the posterior superior 

temporal gyrus, caudally to Heschl gyrus, where the primary auditory cortex (BA 41) 

is located. 

Microscopically, however Wernicke’s area is ill defined and ‘over time, both the 

functional and anatomical boundaries of ‘Wernicke’s area’ have become so broad 

as to be meaningless’ p. 83, (Wise et al. 2001). The anatomical boundaries were 

placed in the tempero-parietal cortices including associative auditory cortex (BA22), 

lateral occipito-temporal area (BA37), angular (BA39) and supramarginal gyri 

(BA40), primary auditory cortex (BA41/42), and planum temporale (BA22). The 

planum temporale has a consistently reported leftward asymmetry (Galaburda et al. 

1987; Geschwind & Levitsky 1968; Kakeshita 1925; Wada et al. 1975), which is 

already apparent after the 29th week of gestation (Wada et al. 1975).  
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Figure 13 Cyto-, receptor-, and myeloarchitectonic definitions of ‘Broca’s area’ 

A Classical cytoarchitectonic maps B Schematic diagram of macroscopic definitions of 
Broca’s area with pars opercularis (1), pars opercularis and triangularis (2), opercularis, 
triangularis and orbitalis (3), opercularis and precentral gyrus (4), triangularis (5) and 
opercularis and posterior half of the Pars triangularis (6) (Keller et al. 2009). C Interindividual 
variability shown with left and right hemispheric 3D reconstructions in three post mortem 
brains after histological preparation (Amunts et al. 1999). D Recepto-architechnic definition 
of 'Broca's area'. Parcellation of an extended Broca’s area based on receptorarchitecture 
segregating BA45 rostro-caudally into an anterior (45a) and posterior part (45b) and 
parcellating BA44 dorso-ventrally with a further extension to area BA6 (Amunts et al. 2010). 
E Myelogenic map of Flechsig (modified by Bonin) indicating early maturation (black), 
intermediate (grey) and latest maturations (white). Number coding corresponding to 
sequential maturation (1-44) (Fuster 1995). 

The term ‘Broca’s are/region’ has not been used consistently in the literature, where 

BA44 and BA45 have both been indicated in isolation, together, or with the 

additional regions BA47 (orbital inferior frontal gyrus) and/or BA6 (inferior precentral 

gyrus) (Keller et al. 2009; Foundas et al. 1998) (Figure 13B). Depending on the 

choice of parameters (e.g., staining dye) different sets of cortical areas were 

recognised (i.e. Brodmann’s 52 areas; Vogt’s 200 areas). In a review on Broca’s 

area, Keller et al. (2009) summarised the various anatomical locations used as 

reference for ‘Broca’s area’ in different studies and concluded that there is a 

dissociation between cytoarchitectonically and functionally defined Broca’s areas in 
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the left and right hemisphere (Figure 13B). The authors appreciate that more often 

than not a leftward asymmetry was reported in cytoarchitectonic studies but 

conclude that due to methodological limitations and variations there ’is currently no 

convincing explanation to associate the left-right asymmetry of Broca’s area with the 

lateralisation of language’ (p. 29). Prior to this cross-study variability review, Amunts 

et al. (1999) investigated the intersubject asymmetry of surface anatomy. The 

authors reconstructed 3D volumes of BA44/45 in three subjects and collected 

histological tissue probes. They were able to show that the surface anatomy varies 

considerably across subjects, and as a consequence so does Broca’s area (Figure 

13C). 

Brodmann’s definition of boundaries was based on visual inspection and hence 

observer-dependent and does not necessarily match other more detailed 

cytoarchitectonic maps (e.g., Vogt, 1910; Sanides, 1962; Ngowayang, 1934; Von 

Economo and Koskinas, 1925; Figure 13A). Brodmann used a single staining 

method that selectively identified cell bodies and neglected the sulci and deep brain 

structures. Additionally, the posterior inferior frontal gyrus is a region of intimately 

located cytoarchitectonic areas and the difference in identified areas between 

studies may be a direct result thereof. Brodmann’s cytoarchitectonical parcellation 

of the cortex (even though today’s best known due to its incorporation in the atlas of 

Talairach and Tournoux 1988), was not the only, and maybe not the best attempt to 

identify distinguishable brain regions. 

Meynert (1885) was the pioneer on cytoarchitectonics. He introduced the concept of 

the six cortical layers (molecular, outer granular, pyramidal, inner granular, spindle 

cell layer, medullary) for most of the cerebrum with a few caudal areas presenting 

with additional layers. This discovery is the foundation of cytoarchitectonics and was 

further developed over the next century. In an early attempt to correlate 

physiological to histological function, Campbell published his beautiful textbook 

containing comparative cross anatomy and histological human studies (A. W. 

Campbell 1905; ffytche & Catani 2005; Macmillan 2012) (Figure 14C). For the 

temporal lobe Campbell distinguished three areas: auditory-sensory, auditory 

psychic and common temporal area. The auditory-psychic area (caudal three fifths 

of the superior temporal gyrus) harbours the centre for ‘word deafness’. 16 years 

after Brodmann, Von Economo and Koskinas published a monumental textbook 

including 112 micrographs. Based on Nissl staining, they defined 54 fundamental 

cytoarchitectonic areas and their atlas was readily adopted in the field of animal 

research but tragically failed to gain recognition within the human neurosciences 
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(Triarhou 2007) (Figure 14A). Von Economo and Koskinas considered sensory, 

motor, amnestic and insular aphasia associated with distinct cortical areas. 

Another functional cortical map was provided by Kleist who employed the clinico-

anatomical approach on World Ward I injury victims to map the deficits and further 

associated these findings with cytoarchitectonics. Kleist identified perisylvian areas 

relevant for sentence and word articulation and comprehension together with 

regions for names, reading and writing (Figure 14B). 

 

In conclusion, cytoarchitectonic mapping of Broca’s area sensu strictu revealed 

considerable intersubject variability for its location and boarders (Amunts et al. 

1999; Keller et al. 2009; Keller et al. 2007).  
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Figure 14 Functional localisation map of the left hemisphere based on 
architectonics  

Coloured areas are relevant for language processing in both models but are not necessarily 
equivalent between A and B. A Corresponding functions of the cortical parcellation 
according to von Economo and Koskinas (1925). B Kleist’s functional correspondence for 
cytoarchitectonic subdivision. 
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3.4.2 Receptorarchitectonics 

It was further suggested that receptor boundaries more clearly than 

cytoarchitectonic boundaries may cluster functionally distinct regions, given that 

neurotransmitters could elicit inhibitory or excitatory responses. Using 

receptoarchitectonics (distribution of receptor binding sites of classical 

neurotransmitters), Zilles et al. (2002) demonstrated interlaminar and regional 

differences for receptor distribution between areas 44 and 45 and surrounding 

areas. Investigating classical transmitters (glutamate, gamma aminobutric acid, 

serotonin, and noradrenaline), the authors showed, for example, that BA45/44 could 

be subdivided rostro-caudally and dorso-ventrally with regards to the receptor 

binding sites for glutamate and serotonin (5-HT). The glutamate receptor is highly 

concentrated in the rostral part and more lowly concentrated caudally of BA45. 5-HT 

on the other hand, has high binding sites dorsally and low binding sites ventrally in 

BA44 (Figure 13D). This subdivision withstands comparative anatomy studies 

(Petrides and Pandya, 2001) and has also been implicated in fMRI studies where, 

for example, the most ventro-posterior part of BA44 was activated during syntactic 

tasks (Indefrey & Levelt 2004) and the dorsal pars opercularis in phonological tasks 

(Heim & Friederici 2003). These studies collectively indicate a more fine grained 

parcellation of Broca’s area on the one hand and on the other a putative extension 

to neighbouring areas such as the premotor area BA6 at the ventral precentral 

gyrus, dorso-lateral prefrontal areas BA9 and BA46, area BA47 at the orbital part of 

the inferior frontal gyrus, and the anterior insula (Figure 13D). 

Receptorarchitectonic analyses of the temporal cortex are not yet available, but 

studies are ongoing (Friederici 2011). 

 

Myeloarchitectonics 

The pioneer Paul Flechsig developed the method of myelinogenesis, whereby the 

myelin sheath at different developmental stages is stained up (instead of cell bodies 

as in cytoarchitectonics). Applying this method systematically, Flechsig and his 

scholars (e.g., Oskar Vogt) derived a myeloarchitectural map of the human brain, 

which Flechsig separated according to an early myelinating primitive zone (for all 

sensorimotor cortices), and an association zone that myelinates last (Figure 13E). 

Considering the localisation of the language network (sensu strictu) the eloquent 

regions are harboured within the intermediately myelinating zone; if the extended 

network is considered, the regions coincide with the late myelinating brain.  
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The conclusion from these studies may be, as Chris McManus allegedly put it when 

asked, what he believes we know for sure: ‘Probably, Broca’s original observation 

that the vast majority of patients who have unilateral damage to their brain, if it’s on 

the left, lose speech. That’s the only thing I think is clear from the whole literature” 

(p. 165, 1988). 

 

3.4.3 Intracarotid amobarbital procedure (IAP) or WADA test 

‘The Wada test […] has been a major source of knowledge concerning the 

lateralisation of language functions’ (Geschwind, 1970). Intracarotid injections of 

amobarbital (IAP, commonly called the WADA test giving credit to Juhn Wada who 

first developed it) have been performed for clinical purposes since 1949, when it 

was noted that a direct intracarotid injection of an anaesthetic agent produces a 

transient ipsilateral paralysis of hemispheric function without the interruption of vital 

functions. This approach has since become the gold standard for pre-surgical 

language lateralisation determination (Wada 1949; Wada & Rasmussen 1960). 

Injection into the language dominant hemisphere causes a dense transient aphasia 

for 2-3 minutes, followed by few minutes of milder aphasic symptoms. As a 

precautionary measure EEG is recorded simultaneously to document functional 

contralateral changes but also monitor possible overflow of the anaesthetic (Emde 

Boas van 1999). Given the invasiveness of the WADA test, it is not without 

controversy and it has been suggested that advanced non-invasive functional 

neuroimaging methods may supersede it in clinical practice (Desmond et al. 1995; 

Binder et al. 1996; Yetkin et al. 1998; Abou-Khalil 2007). However, some studies 

implied that the methodological coherence is greater for the frontal lobe than for the 

temporal lobe (Lehéricy et al. 2000) and believe fMRI is not yet validated enough to 

replace the WADA test in the clinical arena (Rutten et al. 2002). Ross et al. (1988) 

reported that upon left internal carotid artery (ICA) injection their patients became 

densely aphasic. When the right hemisphere was infused patients lost the ability to 

impart affect onto their speech. Right hemispheric modulation of suprasegmental 

(e.g. prosody, affect) language components has been reported several times using 

different psychophysiological methods (Bowers et al. 1987; Weintraub et al. 1981; 

Larsen et al. 1978; Shapiro & Danly 1985; Benowitz et al. 1983). Ross and 

Mesulam (1979) highlighted the relevance of the right fronto-parietal opercula in 

language modulation. The authors conclude that anterior circulation lesions (see 

Figure 22 in Chapter 4) cause loss of affective prosody but also imply it may be an 
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affective motor not a comprehension deficit (i.e. patients understand affect but 

cannot produce it themselves). 

 

Two approaches are employed to calculate lateralisation. One method purely 

measures the duration of muteness (i.e. speech arrest) after left (L) and right (R) 

hemispheric injection and obtains a laterality index based on the formula LI = (L-R) / 

(L+R). The other approach is based on a language assessment before and during 

the procedure yielding the percentage (P) of correct answers under anaesthesia 

(PL-PR) (Benbadis et al. 1998). Even though both approaches seem clinically 

acceptable a validation study showed that the obtained scores from both methods 

do not correlate; a correlation was however shown between the percentage of 

correct performance and language lateralisation as defined with fMRI (Benbadis et 

al. 1998). The WADA test is invasive and brings about various neurosurgical risks 

and, in most patients, the limitations of this method outnumber the benefits, given 

the availability of non-invasive neuroimaging methods. The most striking limitations 

are the following: i) the angiographic procedure is invasive and complications have 

been reported (Dion et al. 1987; Stemmer & Whitaker 2008), ii) complementary 

methods (e.g., intraoperative cortical mapping) are needed to precisely demarcate 

language localisations, iii) the interpretation of the test relies on a ‘normal’ arterial 

anatomy, which is not necessarily given in a patient and iv) the test is approximately 

3.7 times more cost intensive than fMRI (Binder et al. 1996; Medina et al. 2004). 

 

3.4.4 Intraoperative electrical stimulation (IES)  

During intraoperative electrical stimulation the mapping of functional (elucidating an 

obvious response when stimulated) and non-functional (no obvious response upon 

stimulation) areas is performed prior to the potential re-section of brain tissue. Two 

effects can be seen upon stimulation, either an evoked behavioural change or an 

interference with on-going behaviour (Ojemann 2003). A low-frequency stimulation 

is directly administered to specific parts of the brain and the patient is then engaged 

in tasks (i.e. naming task for the testing of eloquent areas). If the patient loses the 

capacity to perform the task when a specific area is stimulated, this brain tissue is 

considered functional. This method is commonly applied in tumour resections and 

epilepsy surgery to maximise the resection of pathological tissue whilst minimising 

language deficits after surgery. The application of direct electrical stimulation to the 
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brain as means of mapping the cortical functions in humans dates back to the year 

1874 (De Witte & Mariën 2012). 

The first to use this method to provide in vivo evidence for Broca’s area as a 

language region was the American neurosurgeon Wilder Penfield, when he 

performed IES of the ‘forbidden territory’ resulting in speech arrest during an object 

naming task in epileptic patients:  

‘Mapping the speech area. Forbidden territory. […] In the beginning it was our practice to 

refuse radical operation upon the dominant hemisphere unless a lesion lay anteriorly in the 

frontal lobe or posteriorly in the occipital lobe. Like other neurosurgeons, we feared that 

removal of cortex in other parts of this hemisphere would produce aphasia. The left 

temporal lobe and the fronto-centro-parietal areas were considered to be devoted to 

mechanisms of speech, and aphasia literature gave no clear guide as to just what might 

and what might not be removed with impunity. But patients continued to present 

themselves in increasing number with focal epilepsy […]. Many of these patients were not 

aphasic. And so we were emboldened gradually to make more and more excisions within 

the forbidden territory.’ p. 103,(Penfield & L. Roberts 1959). 

 

A summary of the electrical stimulation literature compiled by Lecours (1983b) and 

based on Penfield’s work compares the resulting language impairments upon 

stimulation of the left and right hemispheric cortical areas and thalamic pulvinar 

(Table 7). 
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Table 7 Electrical stimulation in cortical and subcortical structures and resulting 
language impairments.  

Colour-coding implies a gradient from greater to lesser (blue-green-yellow) intensity of 
observed phenomena. Palialia: rapid repetition of the same segment, usually a syllable. 

 

This schematic summary indicates that certain functions, such as vocalisation and 

slurring, occur without lateral predominance; whereas other functions, such as 

naming, are strongly left lateralised.  

 

Figure 15 Intraoperative electrical cortical stimulation (Penfield & L. Roberts 1959) 

A Cortical map of areas that interfere with speech upon electrical stimulation (individual 
disturbances include speech arrest, hesitation and slurring of speech, distortion and 
repetition of words and syllables, confusion with number counting, inability to name with 
retained ability to speak, perseverations). B Case C.H. Photograph and corresponding 

A

B
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drawing of the left hemisphere as exposed at surgery. Stimulation of electrodes at 26-8 
produced aphasic interference with speech. 23-4 elicited anarthria (motor speech arrest). 

Penfield’s pioneering explorative work identified a detailed cortical language-

associated region map (Figure 15). This work was complemented by Schaeffler et 

al. (1993) who replicated the speech arrest upon inferior frontal gyrus stimulation 

and furthermore implied that coinciding comprehension deficits for higher-level 

auditory and visual instructions are induced, a finding that has been observed in 

other studies as well (e.g. Papathanassiou et al. 2000). 

 

In recent years, this method was employed for various functional anatomical studies 

(Bello et al. 2008; De Witt Hamer et al. 2011; Ellmore et al. 2009; Leclercq et al. 

2010; Henry et al. 2004; Duffau 2005; Duffau et al. 2005; Duffau, Peggy Gatignol, et 

al. 2008b; Duffau, Leroy, et al. 2008a; Duffau, Denvil, et al. 2002b; Duffau, Capelle, 

et al. 2002a; Maldonado et al. 2011; Mandonnet et al. 2007; Matsumoto et al. 2004; 

Matsumoto et al. 2011). Duffau et al. (2002a) compared their intraoperative 

mapping with pre-surgical MR images and implied the following functional anatomy. 

Upon stimulation of the subcallosal bundle6 language was no longer initiated; 

stimulation of the periventricular white matter resulted in dysarthria and the 

stimulation of the arcuate and insular connections induced conduction aphasia 

symptoms. In a later study Duffau et al. (2009) specifically investigated the 

functional role of the uncinate fasciculus for language and concluded that the 

uncinate is not a language-specific tract but is relied upon for some linguistic 

information. Bello et al. (2008), for the first time using a 3 Tesla (T) MR scanner, 

showed that pathways remain unchanged only in small tumours but dislocate, 

infiltrate or disconnect in larger tumours. Stimulation of individual tracts resulted in 

phonemic (superior longitudinal fasciculus, here considered as a branch of the 

arcuate) and semantic paraphasias (the inferior fronto-occipital and uncinate). De 

Witt Hamer et al. (2011) investigated the putative language tract, middle 

longitudinal fascicle (MdLF, detailed below) (Makris et al. 2009) and reported that 

neither upon stimulation nor removal of large parts of the tract were language 

deficits (transient nor long-term) induced and concluded that ‘the MdLF is not 

essential for language in humans’ (p.967). 

                                                
6 Here defined as ‘a white matter area surrounding the lateral angle of the frontal 
horn containing a pathway through which fibers pass from the cingulate gyrus and 
supplementary motor area to the caudate nucleus’ (p.210). Further references can 
be found in Schmahmann and Pandya (2006) and Forkel et al. (2012). 
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A slightly different approach was employed by Matsumoto et al. (Matsumoto et al. 

2004; Matsumoto et al. 2011). This method is based on invasive monitoring with 

subdural electrodes by inserting a grid of electrodes over a defined patch of cortex 

and was developed to electrically track the cortico-cortical connections for epileptic 

spike propagation. The gird allows stimulating cortical tissue through subdural 

electrodes, and recording the cortical evoked potentials that emanate from distant 

cortical regions. The first language study employing this method demonstrated three 

results: (i) that connections were site specific, meaning that a stimulation at Broca’s 

area elicited cortico-cortical evoked potentials (CCEPs) over the lateral parieto-

temporal area, whereas, stimulation at the face motor area just posterior to Broca’s 

area elicited a more anterior CCEP distribution in the postcentral gyrus;  (ii) the 

connections between the anterior (i.e. Broca territory) and posterior (i.e. Wernicke 

territory) language areas were electrophysiologically bidirectional, meaning that 

stimulation of anterior language areas evoked potentials in posterior language areas 

and vice versa and (iii) the distribution of evoked potentials indicated the existence 

of a large posterior language network distributed over the lateral parieto-temporal 

cortex, such as supramarginal gyrus and posterior part of the superior and middle 

temporal gyri, surrounding the previously recognised core region of this area 

(Matsumoto et al. 2004). 

Multimodal approaches (i.e. combining MR-based imaging with IES) have yielded 

interesting results. Leclerq et al. (2010) report an overlap of 81% between IES 

mapping and MR-based white matter pathway reconstructions. Furthermore, 

articulatory deficits and paraphasias were induced with arcuate stimulation; 

whereas the inferior fronto-occipital fasciculus was only associated with semantic 

paraphasias. Sarubbo et al. (2012) reported the multistage resection (here over the 

course of four years) of Wernicke’s area due to a left temporal tumour inducing 

transient language deficits in a right-handed woman. The pivotal observation in this 

patient is that during her first surgery Wernicke’s territory was spared, as it was 

established to be a functional area. Three years later, however, it was possible to 

remove the very same area due to an apparent utilisation of ipsi- and contralateral 

cortices to perform eloquent functions. Ellmore et al. (2009) matched approximately 

79% of their stimulation map with MR-based white matter pathway reconstructions 

of essential eloquent areas, all intimately located to the arcuate fasciculus. The 

authors conclude that MRI can be utilised to predict the cortical language areas for 

surgical interventions. By far one of the most comprehensive multimethodological 

studies investigated epilepsy patients with a WADA test to determine hemispheric 
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language dominance, electrostimulation of anterior-posterior language cortices, and 

invasive monitoring with subdural electrodes (Matsumoto et al. 2004). The authors 

found that stimulating the anterior language area elicited cortico-cortical evoked 

potentials in the temporo-parietal cortices, in the middle and posterior part of the 

superior temporal gyrus, the middle temporal and supramarginal gyrus. This pattern 

of activity nicely fits to purely anatomical observations described within this chapter. 

 

Despite these exciting findings, inherent methodological limitations have to be 

considered. Firstly, IES can only be applied to a limited clinical population (mostly 

tumour and epileptic patients) where the anatomy is resected and therefore 

population-wide generalisation is limited. Secondly, the interpretation of brain 

structures depends on the a priori conceptual framework of the surgeon and on the 

en vogue terminology (i.e. the arcuate fasciculus was equated to i) the superior 

longitudinal fasciculus (today considered as a fronto-parietal network) (Dejerine, 

1885) and ii) the superior fronto-occipital fasciculus (Onufrowicz 1887). Third, 

intersubject variability in the location of eloquent areas is considerable and seems 

to be associated with age, gender and premorbid language skills of the patient 

(Ojemann 2003). The abovementioned studies do emphasise the coherence 

between MR-based imaging and intraoperative mapping; however, these results 

have to be evaluated on a patient-by-patient basis. The advantages of this 

combined approach are a decreased duration of surgery, reduced patient fatigue, 

and less intraoperative seizures (Bello et al. 2008; Thiebaut de Schotten & 

Bartolomeo 2011). 

 

In conclusion, intraoperative mapping advanced our understanding of the language 

network and emphasised the importance of connectional anatomy. Based on the 

above studies, it might be assumed that the arcuate fasciculus (for articulation) is 

part of an extended language network that further includes pathways such as the 

inferior fronto-occipital fasciculus (for semantics) and the superior longitudinal 

fasciculus (for phonemics). This model, however, awaits multimodal validation. 
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3.4.5 Structural and functional neuroimaging studies  

3.4.5.1 Structural MR-based Diffusion-weighted imaging tractography (DTI) 

Anatomically, Johann Christian Reil (1812) provided the first known pictorial 

description of fibres connecting the inferior frontal gyrus and the superior temporal 

gyrus by arching around the Sylvian fissure. He identified a group of fibres running 

deep in the white matter of the temporal, parietal, and frontal regions closely 

surrounding the Sylvian fissure. Unaware of the significance of these fibres Reil 

entitled them as unnamed white matter and chose the show them in the right 

hemisphere (see Catani and Mesulam, 2008a). Ten years later Karl Friedrich 

Burdach replicated Reil’s extensive anatomical work and introduced Latin names for 

all structures previously described. He designated these perisylvian fibres 

collectively as fasciculus arcuatus, owing to the arching shape of the longest most 

medial fibres (Burdach 1822). The anatomy of the arcuate fasciculus has since 

been found to be more complex than initially anticipated. Jules Dejerine (1895) 

believed that these fibres were composed primarily of short U-shaped associative 

fibres connecting adjacent perisylvian areas.  

A landmark study in modern arcuate anatomy was based on DTI tractography (see 

Chapter 5) and reported that the arcuate fasciculus does not purely interconnect 

inferior frontal and superior temporal gyri, as was classically believed, but is 

constituted of a parallel indirect connection to the inferior parietal lobe (Catani et al. 

2005). The inferior parietal region has previously been indicated as putative 

multimodal association area (Geschwind 1965b). The direct connection (long 

segment) extends from the posterior inferior frontal gyrus to the posterior superior 

and middle temporal gyrus. The indirect segments run between i) the inferior frontal 

and inferior parietal gyri (anterior segment) and ii) inferior parietal and temporal gyri 

(posterior segment). The authors report considerable variability of the temporal 

terminations and the size of all three segments across subjects, but they were able 

to reconstruct the pathways in all participants. Furthermore, the long segment was 

shown to reach beyond the language areas sensu strictu, with rostral terminations 

within the inferior and middle frontal as well as the inferior precentral gyri (BA39,40) 

and the indirect segments projecting more caudally; a finding that complements the 

previously discussed rostro-caudal segregation of Broca’s area (chapter 3.4.1), and 

that will reappear below (see Paulesu 1997). Two years later, the same group re-

investigated the arcuate anatomy and this time included the right hemispheric 

perisylvian connections (Catani et al. 2007). In this study the authors demonstrated 

an interhemispheric pattern of arcuate lateralisation across subjects and further 
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showed a correlation with verbal learning based on semantic association. The task 

performance was best in participants with the most bilateral arcuate anatomy. The 

authors also reported gender differences (for details see paragraph 1.7). 

Glasser and Rilling (2008) segregated the arcuate into two segments: one 

connecting the posterior frontal lobe (BA6, 44) with the posterior superior temporal 

gyrus (BA22), and one projecting from frontal regions (BA6, 9, 45) to the middle 

temporal gyrus (BA21, 37) (Figure 16A). The authors reported both segments to be 

left lateralised and implied a functional segregation whereby the dorsal branch is 

associated with phonological processing and the more ventral branch with lexical-

semantic processes. Makris et al. (2009) reported a middle longitudinal fasciculus 

(MdLF), a tract the authors believed to run within the superior temporal gyrus, 

connecting the temporal pole to the inferior parietal lobe (angular gyrus). The 

authors suggested, based on the cortical terminations of the MdLF, that it is 

associated with language function. As we have seen in the previous subchapter, 

however, more recent stimulation studies of tissue along the trajectory of the MdLF, 

as well as the resection of large parts of it, did not elicit any language deficits (De 

Witt Hamer et al. 2011). Frey et al. (2008) segregated the connection of opercular 

and triangular inferior frontal gyrus based on experimental evidence from monkey 

research and claimed that the opercular region is connected to inferior parietal lobe 

(IPL) through the superior longitudinal fasciculus (branch III). This connection has 

been demonstrated in the comparative literature (Thiebaut de Schotten, Dell'Acqua, 

et al. 2012b). The authors reported that the triangular region projects anterior to the 

Heschl’s gyrus via the external/extreme capsule and further claim that the superior 

temporal gyri connections project dorsally to Broca’s area to BA6 and 8 (Figure 

16A). Overall, these results are coherent with animal studies but lack validation with 

human dissections. The authors do however briefly discuss that they were able to 

find an arcuate with a resemblance to previous post mortem and in vivo reports 

(when placing their regions of interest differently). The ‘classical’ arcuate was 

indeed connecting the posterior superior temporal gyrus to the inferior frontal 

opercular and triangular areas though favouring a connection to pars opercularis. A 

temporo-parietal connection was also described which is attributed to the MdLF as 

described before. Kaplan et al. (2010) considered only a horizontal portion of the 

arcuate fasciculus, which the authors claim is difficult to differentiate from the third 

branch of the superior longitudinal fasciculus (SLFIII), and reported it selectively 

connects the supramarginal gyrus to the caudal inferior frontal gyrus (opercular and 
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ventral premotor area) but not to the more rostral triangular part. This result was 

shown for both hemispheres.  

Anwander et al. (2006) parcellated Broca’s area based on its anatomical 

connectivity. The authors report a segmentation into three regions BA44, 45 and 

deep frontal operculum with the more caudal-dorsal (BA44, inferior precentral 

gyrus) regions being connected to the posterior language areas through the 

arcuate/SLF and more anterior-ventral regions (BA45) through a ventral system 

passing through the external/extreme capsule. Similarly, Frey et al. (2008) 

parcellated Broca’s area into BA44 and BA45 based on connectivity to IPL and the 

superior temporal region. 

A more recent study, dedicated to the shorter intralobar frontal lobe connections, 

showed that the pars opercularis (and, to a minor extent, the pars triangularis and 

precentral gyrus) is connected to the anterior supplementary and pre-

supplementary motor area (pre-SMA) in the superior frontal gyrus through the 

frontal aslant tract (FAT) and further identified a range of fronto-insular tracts 

(Catani, Dell'Acqua, Vergani, et al. 2012b), a finding that is in agreement with earlier 

anatomical (N. Lawes et al. 2008; Oishi et al. 2008) and clinical studies where 

stroke patients with a corresponding lesion presented with articulatory planning 

deficits (i.e. motor squeal of articulation) (Dronkers 1996). It should be noted here 

that even though all studies used in vivo tractography the underlying methods vary 

considerably in their approaches and reconstructions (i.e. deterministic and 

probabilistic diffusion tensor imaging, spherical deconvolution (SD), and q-ball 

imaging). 
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Figure 16 Multimodal approaches to define the anatomy of language 

Cross-methodological comparison of in vivo tractography (A), tomography (D) and 
electrostimulation (C) of perisylvian network in comparison with the classical model. A 
Different classifications of the language network in the living human brain based on MR-
based diffusion tractography. B Classical 19th century post mortem model. C 
Electrostimulaton. D functional tomography studies. 

  

3.4.5.2 Functional imaging (EEG, fMRI, PET) 

3.4.5.2.1 Electroencephalogram (EEG)  

EEG was the first neuroimaging method used to correlate language functions with 

neuroelectrical measures (scalp voltages). The potential of EEG was discovered in 

the 1950s once it became evident that stimulus-dependent measureable 

parameters (amplitude, latency, and skull topography) could be extracted from a 

time series of changes in electrical brain activity recorded from the skull before, 

during and after an event of interest. Event-related potentials (ERPs) are produced 

by endogenous stimuli (i.e. emotions and anticipations of a person) as well as 

exogenous stimuli (i.e. response task). In language studies, event-related potentials 

are time-locked to stimuli presentation and differ systematically with manipulations 
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to phonology, semantics and syntax. Three event-related potentials have been 

implicated as relevant for language processing (Figure 17). One surrogate measure 

is the early left anterior negativity (ELAN, negativity peak around 200ms), first 

described by Friederici et al. (1993), that has been associated with phrase structure 

violations (e.g., ‘The students enjoyed Bill’s of review the play’) (Hahne & Friederici 

1999; Lau et al. 2006). A second later occurring slightly right-lateralised negativity, 

N400 (between 200-600ms), is best recorded over the centro-parietal lobe (Kutas & 

Federmeier 2011) and has been associated with lexico-semantic integration 

(Friederici 2002; Kutas & Federmeier 2011; Steinhauer & Friederici 2001). A late 

centro-parietal positivity (P600 or syntactic positive shift) has been elicited with 

obvious syntactic violations (grammatical anomalies or incongruences such as ‘The 

patient met the doctor while the nurse with the white dress shows the chart during 

the meeting’) that necessitate sentence revision or within syntactically complex 

sentences (Friederici et al. 1993; Osterhout et al. 1994; Kaan et al. 2000). Its 

topographical location is characterised by the syntactic operations involved in the 

building of complex sentences and retrieval processes that influence the latency 

and amplitude of the P600 response (Gouvea et al. 2010). This model has a strong 

modular character whereby auditory sentence comprehension (sentence production 

is not specifically considered here) is processed along a sequential three-step 

cascade.  

Methodologically, EEG provides the advantage of being applicable to healthy and 

clinical populations alike. On the downside EEG is lacking the spatial resolution that 

is needed to locate language processes to anatomical structures and networks. 

Additionally, language ERPs are best seen in violation paradigms, which may not 

produce language-specific responses but categorical violation-specific responses. 

Attempts to combine EEG with other imaging methods to circumvent this problem or 

advanced EEG method with improved spatial resolution have been attempted but 

are not yet readily applicable. 
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Figure 17 Electroencephalogram event related potentials representing language 
processes 

P600 for integration processes, N400 for semantic processes, and early left anterior 
negativity (ELAN) for initial syntactic structural processes. These potentials are best 
elicited within violation paradigm studies, here represented as solid lines for correct 
conditions and dotted lines for semantic/syntactic violations (modified from (Friederici 
2002; Friederici 1985)). 

3.4.5.2.2 Positron emission tomography (PET) and functional magnetic resonance 

imaging (fMRI) 

It was only in the late 1980s that a Nature publication highlighted the usability of 

PET in language research (Petersen et al. 1988). Nowadays considered as the 

typical functional imaging methods, PET and fMRI have been the methods of choice 

for many years to investigate the human brain in vivo during task and rest periods 

and a plethora of articles has been published in established journals. See (Cabeza 

& Kingstone 2001), for a comprehensive review. Functional methods are based on 

the task-dependent blood oxygen (O) level changes induced by a certain area’s 

increased demand for oxygen and nutrition due to altered performance needs. This 

increased oxygen level can be measured through modulation of regional cerebral 

blood flow (rCBF), or extracted as an fMRI signal called blood-oxygen-level-

integration
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processes

syntactic structure 
processing

P600
700ms

N400
550ms

ELAN
160ms



Part I. Introduction  Anatomy of Language 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 104 

 

dependent (BOLD) effect. PET or perfusion MRI are most commonly utilised to 

directly correlate mental operations with indices of brain activity. 

Recent language models incorporate functional neuroimaging data. All of these 

models, however, highlight different aspects of language, namely lexical processing 

(Price 2010), integration of linguistic structures (Friederici 2002), continuous speech 

perception (Hickok & Poeppel 2007), and articulation (Indefrey & Levelt 2004). 

 

Dual stream model by Hickok and Poeppel  

Poeppel and Hickock (2000) elaborate on their dual-pathway model, derived from 

imaging, deficit-lesion, and electrophysiological data. Within this model the 

pathways originating from the superior temporal gyrus extend along a dorsal 

parieto-frontal route to interface auditory-articulatory representations of speech and 

along a temporo-parieto-occipital route for lexical-semantic mapping. Auditory 

stimuli are initially processed bilaterally within the superior temporal gyrus and 

sulcus. Further processes are separated along two routes: a bilateral ventral route 

(ventrolateral superior temporal gyrus to inferior and medial temporal gyrus) for 

comprehension and “meaning mapping” and a left-hemispheric dorsal route (inferior 

partial lobe to inferior frontal gyrus) for phonologic-articulatory mapping (Figure 

16D). This model was functionally extended by Saur et al. (2008) and Saur et al. 

(2010) who suggested that the dorsal route is relevant for higher phonological 

processes (e.g., repetition of pseudo words) and the ventral stream is implicated in 

comprehension. 

 

Language comprehension and syntax  

Angela Friederici (2002) argued in favour of a bilateral temporo-frontal network for 

auditory comprehension. Within this model the temporal cortices subserved 

identification of syntactic and semantic input whereas the frontal lobes are relevant 

to build relations between them.  

In the left hemisphere, the anterior part of the superior temporal gyrus is relevant for 

the identification of syntactical information and the middle temporal gyrus is relevant 

for semantic content identification. In the right hemisphere, processing of 

suprasegmental information (i.e. prosody) activates the posterior part of the superior 

temporal gyrus. The relation between the syntactic and semantic information is then 

formed in the frontal lobe in BA44 and operculum and BA45/47. From EEG studies 
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it is apparent that syntactic identification precedes semantic identification, i.e. a 

syntax-first model, but all processes of auditory sentence comprehension have to 

be integrated at a later processing stage to fully understand spoken language. 

Anatomically this model is placed within the traditional framework wanting the 

inferior parietal extension, and the notion that Broca’s area is language-relevant 

(locus of syntax) but not language-specific as other tasks activate this region as 

well. 

 

Functional imaging reviews 

In a review of functional imaging and stimulation studies, Indefrey and Levelt (2004) 

proposed a time-locked five stage model for articulation and comprehension that 

anatomically translates into lexical access and retrieval within the middle and 

superior temporal gyrus and syllabification in the posterior inferior frontal cortex, and 

articulation in the inferior precentral and postcentral gyrus. This model, however, did 

not highlight the parietal lobe as language-relevant (Figure 16). These studies 

complement and challenge the classical language and aphasia model (for review 

see (Démonet et al. 2005; Vigneau et al. 2006) reviewing 1992-2006, (Friederici 

2011) reviewing 1993-2011, (Price 2010) reviewing 2009, and (Price 2012) 

reviewing 1992-2011).  

The pioneering work in the field of functional language studies (with PET) was 

provided by Petersen et al. (1988) where a functional anatomical model was 

established. The authors favoured a parallel processing cascade, whereby 

perceived words (either visually or auditory) engage separate modality-specific 

areas, with a common and parallel access to articulatory and semantic information. 

Most interestingly is the authors’ interpretation of Broca’s area: 

‘The left Sylvian regions are near Broca’s area; a region often viewed as specifically 

serving language output. But Sylvian activation was also found in the right hemisphere, and 

this bilateral Sylvian activation was also found when subjects were instructed to simply 

move their mouths and tongues, arguing against this region as language-specific’ (p. 587) 

 

They further allocated semantic processing to the left ventrolateral inferior frontal 

gyrus (BA47) and articulatory processes along the frontal motor system. This study 

was replicated and extended by Wise et al. (1991) who demonstrated that the 

classical Wernicke’s area is the only temporal lobe region whose activation is 

independent of the rate of presentation of auditory stimuli.  
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Most recent meta-analyses (Vigneau et al. 2006; Price 2012; Price 2000; Friederici 

2011; Démonet et al. 2005; Turken & Dronkers 2011) showed that phonological, 

syntactic and semantic processes grossly follow the gyral surface architecture and 

even though mostly distinct, partially overlap locally. The anterior superior temporal 

gyrus is activated by all three modalities. Phonological processes seem to be 

propagated within the posterior-dorsal aspects of the frontal and temporal lobes; 

whereas semantic and sentence-level analysis was ascribed to the pole and middle 

portion of the middle temporal gyrus. The pars opercularis and ventral triangularis of 

the frontal lobe are associated with semantic and syntactic processes. This study 

further concludes on a functional rostro-caudal segregation of the inferior frontal 

gyrus as it was proposed by various individual studies whereby the triangular area 

is more associated with semantic processes and the opercular areas with 

phonological processes (Buckner et al. 1995; Zatorre et al. 1996; Nixon et al. 2004; 

Bookheimer 2002). 

 

3.4.6 Hemispheric asymmetries in language-related pathways 

Functional lateralisation (and with it hemispheric specialisation) is often quoted as a 

cardinal achievement in human brain development that is crowned by the evolution 

of language. The lesion-deficit approach of Broca and Wernicke promoted the left 

hemisphere as being language-dominant. Most experimental work on hemispheric 

specialisation originated from the study of epileptic patients undergoing surgical 

section of the corpus callosum (interhemispheric white matter connection) for 

seizure control, the famous ‘split-brain’ patients. These patients provided the unique 

opportunity to study hemispheric functions rather independently from the input and 

interaction with the other hemisphere. Based on a series of investigations, 

Gazzaniga et al. (1981) concluded that for language, the left hemisphere is 

dominant for expressive functions whereas the right hemisphere is only capable of 

comprehension with minimal syntactic processing. Phonetic processing was tested, 

for example, with an auditory dichotic test where stimuli are presented to one ear at 

a time and the patient is instructed to transcribe the heard message. This was only 

possible for stimuli presented to the left hemisphere (transcribed with the right hand) 

but not for stimuli presented to the right hemisphere (transcribed with the left hand).  

However, these are selective case reports that often are warrant of pre-surgical 

hemispheric language dominance information and can therefore be marvelled at for 

their excellent experimental neuropsychological complexity but allow limited 

generalisation for language lateralisation. 
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Another source of information originates from lesion-deficit studies and the 

subsequent recovery from brain lesions, such as in stroke. In this context it has long 

been hypothesised that undamaged neighbouring cortical areas as well as 

homotopic contralateral cortical areas might compensate for some of the lost 

function in the language dominant hemisphere (Roch Lecours et al. 1983a). Nearly 

30 years ago it was still speculation that the influence of the right hemisphere varies 

dependent on the degree of functional language lateralisation; a hypothesis that 

was not testable with the available methodology but has since been validated 

(Matsumoto et al. 2008). The early, yet invasive, gold standard to define language 

lateralisation used to be through the injection of sodium amytal (as described in 

3.4.3). However, if applied to stroke patients with a left hemispheric lesion the 

deficits would be equivalent to the symptoms of bilateral lesions.  

 

In recent years, functional MRI and tractography has been used to study the 

laterality of language and the underlying connectional anatomy. In one such study 

Powell et al. (2006) examined 10 right-handed healthy volunteers showed a 

bilateral, yet left dominant, lateralisation for language functions with a corresponding 

pattern for the tractography of the inferior frontal gyrus to the superior temporal 

gyrus connection. Yet, no significant correlation was found between the volumetric 

lateralisation of the arcuate fasciculus and the degree of functional lateralisation for 

verbal fluency, verb generation and reading comprehension. Interestingly, functional 

lateralisation correlated with the lateralisation of the fractional anisotropy of the 

arcuate fasciculus. In a similar study design, only this time using deterministic 

instead of probabilistic tractography, the leftward asymmetry of the arcuate 

fasciculus was replicated in right- and left-handed healthy participants by Vernooij et 

al. (2007) who further reported a correlation with the number of streamlines of the 

arcuate fasciculus and functional asymmetry. In the same year, Catani et al. (2007) 

reported on the asymmetry of the arcuate fasciculus as shown with deterministic 

tractography and provided two pivotal observations, (i) across the population the 

degree of asymmetry is variable between individuals and (ii) that a more bilateral 

representation of the arcuate fasciculus is indicative of better task performance on 

the CVLT. In this study, individuals were clustered into three groups. The first group 

only had the arcuate fasciculus in the left hemisphere; the second group presented 

strong leftward asymmetry but had right-hemispheric connections whereas the third 

group was completely bilateral. Unfortunately this study is devoid of functional 

measurements and it is therefore not clear for which aspects of language the 
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laterality pattern might be most important. Matsumoto et al. (2008) replicated these 

asymmetry findings in 24 patients with focal lesion or  epileptic focus. In this study 

the WADA test was used to determine the unilateral language dominance and the 

results showed that the direct fronto-temporal connection of the arcuate fasciculus 

was significantly lateralised to the dominant hemisphere. Another patient-based 

study investigated 30 left-hemispheric chronic stroke patients with residual 

language impairments and identified that the extent of damage to the left arcuate 

fasciculus was predictive of the residual impairments (Marchina et al. 2011). The 

authors did the same analysis with the uncinate fasciculus and the external capsular 

system, which had no predictive significance. What these studies highlight however 

is (i) the importance of the right hemisphere for language functions and possibly 

recovery, (ii) the gap between strong unilateral functional representation and a 

common bilateral structural representation. 

 

In conclusion, post mortem and especially in vivo imaging studies have expanded 

and re-fined our understanding of the anatomy of language. Various imaging 

methods (in vivo and lesion-deficit) suggest that Broca’s area is not a homogeneous 

entity but can be parcellated into sub-regions, such as the dorsal/ventral opercularis 

area relevant for syntax and the anterior and posterior triangular area relevant for 

semantics. It has to be noted that, albeit advanced, these methods still have their 

limitations. Electrocortical recordings and tomography methods are complementary 

yet at the same time in striking opposition in terms of their temporal and spatial 

resolution. Skull recordings are most apt for time-locked responses but the 

activation cannot be precisely located on the cortex or subcortical structures; 

whereas tomography has a good spatial resolution but several seconds of 

hemodynamic delay in signal generation which does not allow it to pick up delicate 

signals such as the language-specific positivities and negativities (ELAN, N400, 

P600). The fMRI signal was further shown to be influenced by endo- and 

exogenous factors including age, gender, motivation, literacy, task difficulty, 

response modality (e.g. vocal, motor, thought), motion artefacts, paradigm 

dependency (e.g. word or sentence level), morphing into Talaraich space (for 

detailed review see Démonet et al. 2005). 

 

The paramount conclusion concerning the neuroanatomy of language can only be 

that although some of the first lesion-deficit findings have never been totally 
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invalidated (e.g., the involvement of Broca’s area in speech production and the left 

superior temporal gyrus in auditory verbal comprehension) our understanding 

expanded tremendously over the course of the 20th century owing to the rapid 

advances of in vivo imaging methods. Considering the abovementioned studies, it 

seems that the language network relies on quintessential language-relevant areas 

within a large-scale network that selectively activates/co-activates core regions (i.e. 

semantics activate area BA45, phonological processing is restricted to the dorsal 

aspect of BA44). Not only does current research suggest an expanded left 

hemispheric network but also the influence of the right hemisphere has come under 

close scrutiny with the present understanding being that suprasegmental 

components of language are generated, modulated and processed by the right 

hemisphere. Despite the impression that multi-imaging methods provide converging 

evidence we have to bear in mind that ‘infinitesimally tiny physical forces that occur 

in the brain (which are presumed to be associated with elements of language) must 

(1) be tremendously magnified and then (2) radically transformed into something the 

reader can see’ p57, (Stemmer & Whitaker 2008). Results therefore have to be 

scrutinised against the underlying methodological approach it was obtained with. 

Anatomically, the network of language is determined by cortical and subcortical 

structures. All perisylvian structures lie within the vascular territory mainly supplied 

by the middle cerebral artery. The next chapter will detail the underlying vascular 

supply to all language relevant areas in the brain and investigate how an 

interruption to the blood supply can cause aphasias. 
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CHAPTER 4 STROKE 

 ‘The cortex is not infinitely adaptable. If it were, every stroke 
patient would recover completely’ 

(Seung 2012) 

 

4.1 Short history of stroke 

A clinical description of stroke, or as it used to be called apoplexy, is available from 

early writings by Hippocrates: 

‘The healthy subject is taken with sudden pain; he immediately loses his speech and rattles 

in his throat. His mouth gapes and if one calls him or stirs him he only groans but 

understands nothing. He urinates copiously without being aware of it. If fever does not 

supervene, he succumbs in seven days, but if it does he usually recovers’ (translated in 

(Clarke 1963). 

 

In the tradition of the Greek medicine of humours (yellow bile, blood, phlegm, black 

bile) that are each attributed to earthy resources (fire, air, water, earth) and 

associated with certain qualities (hot, cold, dry, moist), apoplexy was considered to 

be caused by accumulated cooled-off black bile. Hence, a feverish patient was 

thought to be recovering because fever would warm the blood and black bile (Finger 

1994). Still, most patients died within a week. The Swiss physician Jakob Wepfer 

reported in his monograph ‘historiae apoplecticorum’ (1759) on 21 stroke patients 

with detailed medical histories and post mortem accounts. He described the blood 

vessel system in detail and recognised that apoplexy can have two causes, namely 

blockage of the internal carotid and vertebral arteries or rupture of blood vessels, 

and that these occur at certain preferential areas of rupture. The importance of the 

carotid arteries is also represented in its name, which originates from the Greek 

word ‘karos’, meaning ‘deep sleep’ and implies that any impediment to the blood 

flow to the brain results in unconsciousness (Fields & Lemark 1989).  

The definition of apoplexy, however, was still vague and by no means exclusive to 

what we would refer to as stroke these days as patients with sudden loss of limb 

sensation and uncoordinated movements were often categorised under apoplexy: 

‘[…] In any disorder in which the patient suffered sudden loss of consciousness and died 

shortly thereafter, this diagnosis was no doubt also invoked. Thus acute myocardial 
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infarction and pulmonary embolism, as well as acute non-vascular cerebral events, would 

be included in what we can more correctly call the apoplectic syndrome’ p.302, (Clarke 

1963).  

 

However, being a scholar of his time, Wepfer’s explanation was that if vessels are 

blocked then life spirits are hindered from entering the brain and from being 

transformed into soul spirits (spiritus animalis); whereas if vessels are ruptured soul 

spirits are hindered from entering the periphery. Predisposing causes for stroke 

according to Wepfer were cold weather, storms, laziness, and spicy food.  

Giovanni Battista Morgagni, when in his eighties, defined two causes of apoplexy: i) 

serous, ii) sanguineous (i.e. haemorrhagic). With this clinico-pathological opus in 

epistolary form, the ‘challenge of unsolved problems seriously enters the medical 

literature’. To Morgagni the ‘proximate cause' of either a sudden diminution of the 

internal motions performed in the brain, to wit, when we move, think, or perceive ... 

yet there are many and various causes that bring it about, some of which entirely 

escape the notice of the senses' p.118, (Schiller 1970). 

The association between blood and stroke was already recognised in Morgagni’s 

times and even though Morgagni provided a dichotomous aetiology, apoplexy 

became associated with haemorrhage only. In the UK, Bayle described calcification 

and plaques in cerebral arteries, especially in the elderly: 

‘It is very common in examining the brain of persons who are considerably advanced in life, 

to find the trunks of the internal carotid artery upon the side of the sella turcica very much 

diseased, and this disease extends frequently more or less into the small branches. The 

disease consists of bony or earthy matter being deposited in the coats of the arteries, by 

which they loose a part of their contractile and distentile powers, as well as of their 

tenacity.’ From Morbid Anatomy, 1793 in (Gruber-Gerardy et al. 2005) 

 

Only in 1820 did the French physician Rostan claim ‘softening of the brain’ (i.e. 

'diminution of cohesion in the tissues' according to his mentor Andral) to be the 

most common cerebral lesion and refused inflammation as the cause whilst still 

lacking the evidence of vessel occlusions. Arteriosclerosis (hardening of the 

arteries) was first mentioned in 1829 by the physician Johann Lobstein. He 

‘described the arterial thickening and that 'yellow puree-like, uneven, knobby matter, 

perfectly similar to the surface of those bones affected with osteosclerosis'; it was 

not 'phlogistic', i.e. not inflammatory, but I can neither give its cause nor its effect’ 

p.123, (Schiller 1970). The link between hardening of the arteries resulting in 

softening of brain tissue was not recognised yet. Still adhering to the inflammatory 

doctrine, Cruveilhier already recognised the relevance of cardiac blood clots: 
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‘Also the cretaceous changes […] in the arteries of old women at the Salpetriere have not 

escaped me. Are they not sometimes, with their shrunken lumen, the cause of arterial 

occlusion –both through themselves […] and through the arteritis obliterans that some 

times follows. […] It was extremely likely that fragments would be thrown towards the 

extremities in a great number of cases […] also from the right ventricle into the pulmonary 

circulation' p.125, (Schiller 1970). 

 

Cruveilhier’s phenomenon was later described by Virchow (1847), who coined the 

term emboli for these fragments (Figure 18). With the postulations from Virchow’s 

thrombogenesis, the knowledge of spreading of emboli, and the knowledge of 

arteriosclerotic changes, much of our knowledge today was already established 

some 150 years ago. Virchow’s work on problems of vascular and inflammatory 

pathology was continued and expanded by his scholar Cohnheim, who introduced 

the concept of ‘cerebral infarct’ through his arterial wax globules injection studies. 

With this method he engineered emboli that result in either ischemic necrosis (due 

to cessation of nutritional supply) or haemorrhage. These experiments were done in 

the frog. 

 

 

Figure 18 Photograph of Virchow and his idea of thrombogenesis (1862) (in 
(Gruber-Gerardy et al. 2005) 

 

In Austria in the 1840s, ‘Rokitansky had presumably performed more autopsies than 

any single man before him. As to haemorrhagic apoplexy Rokitansky insisted on a 

novel concept: its close mechanical association with heart disease. Many 

apoplexies were due to congestion, or dilatation of the right ventricle. Haemorrhage, 

more importantly, may secondly be related to hypertrophy of the left ventricle and 

hence to an increased 'impulse' p.126, (Schiller 1970). Hypertension was not easily 

measured at this time and the most applicable treatment of stroke was bleeding. It 

A B
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was only in the second half of the 19th century that sphygmographs were 

manufactured to measure systolic blood pressure (Gruber-Gerardy et al. 2005). The 

influence of hypertension towards arteriosclerosis was described in the early 20th 

century.  

Stroke terminology is influenced by philosophical and medical constructs. The 

Greek term ‘apoplexia’, means ‘struck down by violence’ and mirrors the fact that a 

patient develops sudden paralysis and change in well-being. The term still implies 

some celestial force reflecting the philosophy of that time. Stroke (or stroke of 

apoplexy) was used as a synonym for apoplectic seizure as early as the 16th 

century and is a fairly literal translation of the Greek term (similarly for French coup 

de sang, and German Schlaganfall). The use of the expression ‘cerebrovascular 

accident’ has been widely abundant owing to the fact that stroke is not considered 

as accidental but usually has underlying diagnosable causes and some strokes may 

be preventable if those cause and risk factors (RF) were recognised and controlled 

early on (Hankey 2007). 

The term embolus was used prior to Virchow but not in the sense he used it in his 

work nor similar to the current understanding (Schiller 1970). Paul of Aegina in the 

seventh century coined the term hemiplegia which is still in use (Schiller 1970). 

Even though stroke seems well-understood today, these advances have been 

rather recent and much knowledge was gained from the advent of in vivo 

neuroimaging. Some concepts have been deducted by clinicians for centuries and 

were statistically validated in controlled large cohort studies more recently (e.g., the 

importance of hypertension and the efficacy of aspirin); whereas other concepts did 

not stand the test of time (e.g. unrestrained laughter as a cause of stroke). 

 

4.2 Definition of stroke 

The current clinical World Health Organisation (WHO) definition of stroke is ‘a focal 

(or at times global) neurological impairment of sudden onset, and lasting more than 

24 hours (or leading to death) and of presumed vascular origin’ p. 11, (ManualWorld 

Health Organization 2006). Within this definition the symptom duration beyond 24 

hours is crucial as focal neurological symptoms resolving within 24 hours are 

defined as transient (short-term) ischemic attacks (TIA). The WHO defined this time 

frame in 1978 not on the grounds of documented time courses but rather due to the 

uncertainty about its course. Most TIA symptoms, even though they can last for up 

to 24 hours, do resolve within 30 minutes. If symptoms persist beyond 24 hours a 
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focus of ischemic infarction can be detected using certain neuroimaging contrasts or 

at autopsy (Mohr 2004). The critical differentiation is therefore based on 

pathological tissue changes, whereby brain tissue will infarct (as is the case of 

stroke) or blood flow is quickly restored not rendering the tissue permanently (as is 

the case for a TIA). The presence of a TIA increases the risk of future stroke. 

 

4.3 Epidemiology of stroke 

The study of the distribution and causes of stroke within the population and in 

particular within south London has yielded congruent results but with varying 

frequency estimates. Epidemiological studies are heterogeneous in design and 

outcome measures used, ICD criteria are regularly revised and catchment areas for 

a defined population may have changed. These and other factors directly impact on 

the obtained results (which vary) and the numbers presented in this thesis are to be 

interpreted as current estimates. 

 

4.3.1 Incidence, prevalence, and mortality 

Incidence. The stroke incidence for south London can be estimated from the South 

London Stroke Register (SLSR), a registry spanning over 7 years of first-ever 

strokes in a multi-ethnic urban population of 271,871 inhabitants (63% white, 28% 

black, 9% other ethnical background) (see for example (Stewart et al. 1999; Addo et 

al. 2011; Wolfe 2002; Markus et al. 2007; Hajat et al. 2011; Mohan et al. 2009). The 

risk of first-ever stroke, and the type of stroke, varies considerably internationally 

and between socioeconomic groups - with an increased risk and higher incidence of 

small vessel occlusions amongst black individuals, Hispanics, Pacific Islanders and 

Asians (Hajat et al. 2011). Within the south London population the annual age-

adjusted incidence rate (total ischemic strokes not stratified by aetiology) per 

100.000 was 101.2 (95% CI 82.4 to 122.9) in men and 75.1 (95% CI 59.1 to 94.1) in 

women, yielding a 34.75% excess in men (Hajat et al. 2011). The risk of stroke 

increases with age and approximately one in four men, and one in five women aged 

45 years, can expect to have a stroke if they reach the age of 85 years (Wolfe 

2000). The evaluation of stroke incidence within South London (stratified by age) is 

shown in a global geographical comparison in Figure 19. 



Part I. Introduction  Stroke 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 115 

 

 

Figure 19 Annual stroke incidence rate stratified by age and country per thousand 
cases  

All stroke types included. South London incidence rate is indicated by red arrow (from 
(Feigin et al. 2003). 

 

Prevalence. A review of nine population-based studies (for New Zealand, US, 

Netherland, UK, Bolivia, Papua New Guinea, China, and Italy) yielded an age-

standardised prevalence for people over the age of 65 years of between 46.1-73.3 

per thousand people, with men ranging between 58.8-92.6 and women between 

32.2-61.2 (Feigin et al. 2003).  

 

Mortality. Stroke is currently the second leading cause of death in the UK and 

worldwide, accounting for an estimated 4.5 million deaths worldwide with an 

estimate of nine million survivors (Wolfe 2000; Mathers et al. 2009). The average 

age-adjusted stroke mortality ranges between 50-100 per hundred thousand people 

per year in developing countries (Donnan et al. 2008). For our South London 

recruitment centre (King’s College Hospital (KCH), Camberwell, Greater London) 

specifically, the mortality rate amongst the admission to the stroke unit was on 

average 6.08% (range 1.2-15.1%) over a period of six months (July to December 

2009). 
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4.3.2 Risk factors 

Risk factors for stroke and predisposing conditions can include modifiable 

environmental factors (e.g., smoking, diet) and non-modifiable factors (e.g., 

demographics, genes; Table 8. Certain predisposing factors (e.g., elevated blood 

pressure) are common to both stroke types, whereas others may be more relevant 

in the aetiology of haemorrhages rather than ischemia or vice versa.  

 

Table 8 Risk factors of stroke stratified according to their modifiability (from 
(Goldstein et al. 2006). 

Non-modifiable RFs Modifiable RFs Modifiable lifestyle factors 

• Age 
• Sex 
• Ethnic background 
• Family history 
• Previous strokes 

• Hypertension 
• Atrial fibrillation (AF) 
• Diabetes mellitus 
• Hyperlipidaemia 
• Non-valvular AF 

• Weight 
• Physical activity 
• Substance misuse 
• Smoking 
• Oral contraceptive 

 

4.3.2.1 Demographic factors 

Ethnic background, advanced age, and sex have been consistently shown to 

contribute significantly to the risk of stroke (Stewart et al. 1999; Hajat et al. 2011; 

Markus et al. 2007; Cox et al. 2006; Feigin et al. 2003; Lawes et al. 2004). Stroke 

can happen at any time in life but advancing age brings higher incidence rates for 

hypertension, atrial fibrillation and other risk factors. Geographical differences in 

stroke risk are consistently shown in the literature, such as described above and 

shown in Figure 19.  

 

4.3.2.2 Previous stroke and transient ischemic attacks (TIA) 

Between 15-23% of strokes are preceded by a transient ischemic attack (TIA) 

(Lovett et al. 2003; Giles & Rothwell 2007). The immediate risk of reoccurrence 

within the first week after a stroke is reported to be between 1-12.8% (Johnston et 

al. 2000; Giles & Rothwell 2007). Reliable predictors of patients at high risk are still 

needed (Hill et al. 2004) and the annual incidence for stroke reoccurrence was 

estimated to be between 4-14% (Hier et al. 1991; Davis et al. 1987). The 

reoccurrence risk is tightly linked to clinical treatment and patient compliance. For 

example, in an investigation of two cohorts with atrial fibrillation (AF) over a period 

of six years Mant et al. (2007) showed that the cohort on anticoagulation treatment 

(e.g., warfarin) had a lower incidence of strokes compared to the cohort on 



Part I. Introduction  Stroke 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 117 

 

antiplatelet treatment (e.g., aspirin). Within the anticoagulation group (n=488) 24 

participants suffered from a primary stroke (1.8% risk per year) whereas in the 

antiplatelet group (n=485) 48 events were registered (3.8% risk per year; Relative 

Risk warfarin vs. aspirin 0.48, 95% CI 0.28–0.80, p=0.0027). The cost and benefits 

of anticoagulation treatment has to be evaluated on a patient-specific basis because 

it seems significantly to reduce the risk of stroke occurrence but requires high 

patient compliance in terms of regular blood tests and has an increased risk of 

bleeding (Mant et al. 2007; EAFT 1993). 

 

4.3.2.3 Hypertension and atrial fibrillation (AF) 

Hypertension is the prime independent risk factor for strokes (ischemic and 

haemorrhagic) across both sexes and all age groups. Hypertension occurs in most 

adult populations and an estimated two thirds of strokes are attributable to elevated 

blood pressure levels (Lawes et al. 2004). 

 

Table 9 WHO classification of systolic hypertension in relation to increased risk of 
stroke 

 

 

 

 

 

This increase in risk is dependent on the magnitude of elevated blood pressure; 

with groups suffering from essential hypertension at stage 2 or 3 demonstrating a 

three-fold risk (Mohr 2004; Wolf et al. 1991; P. H. Davis et al. 1987) (Table 9). Both 

forms of hypertension (systolic, diastolic) increase the risk but elevated systolic 

blood pressure appears to be a more robust predictor (Mohr 2004; Pedelty & 

Gorelick 2007; MacMahon et al. 1990). Controlling blood pressure can reduce the 

initial risk and risk of reoccurrence by 36% for the subsequent 5 years of 

hypertensive treatment (Simon 1991). 

Often co-incident with hypertension is arrhythmia (e.g., AF), which has been 

acknowledged to predispose to stroke with an estimated seventeen fold risk 

increase for valvular AF and six fold increase for non-valvular AF (Pedelty & 

Staging Range Risk  

Normal <130mmHg  

Stage 1 140-159mmHh systolic 2x  

Stage 2 ≥160mmHg  3x 

Stage 3 ≥180mmHg  3x 
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Gorelick 2007; Wolf et al. 1991). For each advancing decade of age the incidence 

of AF nearly doubles (Wolf et al. 1991) and AF-induced strokes are associated with 

higher mortality rates, larger infarct size, and increased disability (Pedelty & 

Gorelick 2007).  

 

4.3.2.4 Blood chemistry 

Abnormalities in cholesterol, low and high density lipoproteins, elevated 

homocysteine, and triglycerides have been investigated as contributing factors. 

Lipid levels have come into focus following the advent of successful stroke 

prevention with statin agents, which lower lipid levels by inhibiting 3-hydroxy-3-

methylglutaryl coenzyme A reductase. Increased high-density lipoprotein has been 

found to reduce the risk of ischemic stroke (Sacco et al. 2001). The relationship 

between cholesterol and stroke seems more complex. Research indicated that 

reduced levels of cholesterol (<4.1mmol/l) increase the risk for intracerebral 

haemorrhages (Torbey & Selim 2007; Mohr 2004); whereas increased total 

cholesterol seems to be associated with an increased risk of ischemic stroke 

(Pedelty & Gorelick 2007).  

 

4.3.2.5 Diabetes mellitus 

The relative risk for stroke in diabetics (type I and II) has been estimated to be 

between 1.5-3.0 after accounting for other risk factors (e.g., blood pressure 

elevation) (Barrett-Connor & Khaw 1988). Thromboembolic strokes seem to have 

the strongest relation with diabetes (Abbott et al. 1987). Poor diabetes management 

and longer disease duration further increase the risk additionally (Roehmholdt et al. 

1983). 

 

4.3.2.6 Lifestyle factors 

Smoking puts people at an estimated higher risk for stroke of 1.5–2 times with a 

dose-dependent (i.e. heavy smokers are at higher risk than light smokers) and sex-

dependent distribution (i.e. smoking women are at higher risk compared to smoking 

men) (Shinton & Beevers 1989). 

 

Alcohol influences stroke risk, especially for haemorrhagic stroke, in a dose-

dependent fashion following a J-shaped function (Sacco et al. 1999). This curve 
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suggests beneficial effects of minor alcohol consumption and devastating effects in 

heavy drinkers. Alcohol may influence the stroke risk in various ways such as 

elevated blood pressure, cardiac arrhythmias, and reductions in cerebral blood flow. 

 

Dietary habits such as consumption of whole grains, fish, fruit and vegetables have 

been related to general health and reduced incidence of stroke (Mohr 2004). 

 

Physical activity has been shown to reduce stroke incidence, especially in men 

(Abbott et al. 1987; Mohr 2004). Abdominal obesity in both sexes, and especially in 

younger patients, was implicated as a contributing factor when the waist-hip ratio 

was greater than 0.93 in men and 0.86 in women (Suk et al. 2003). 

 

Oral contraceptives have been implicated to increase stroke risk by 2.75 in women, 

especially beyond the age of 35 years and even more so in combination with other 

risk factors such as smoking and hypertension. This is due to enhanced clotting 

based on an increase in platelet aggregation and by the alteration of clotting factors 

favouring thrombogenesis (Mohr 2004; Gillum et al. 2000). The risk seems to be 

dose-dependent with low oestrogen content (less than 50µg) not appearing to 

increase the risk (Petitti et al. 1996). 

 

4.3.2.7 Seasonality 

The influence of cold weather was already suspected as a risk factor at Galen’s 

times (Schiller 1970). A winter excess of stroke has now been documented in 

several studies but heterogeneous effects of weather on stroke occurrence are 

reported (Rothwell et al. 1996; Magalhães et al. 2011; van Rossum et al. 2001). 

Seasonal effects have been described with stroke incidence peaking in the winter 

(Myint et al. 2007), followed by spring (Turin et al. 2008), autumn and summer 

(Haberman et al. 1981). Not only seasonal changes have been related to the 

incidence and mortality of stroke but also daily meteorological changes, such as 

rapid (within 24-48 hours) temperature drops or increases and changes in the 

atmospheric pressure (Jimenez-Conde et al. 2008). Interestingly, atmospheric 

pressure drops are more likely to cause ischemic strokes whereas an increase is 

more likely to cause haemorrhages (Jimenez-Conde et al. 2008), which may 

partially explain the difference in seasonal incidence. 
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The relationship between stroke and meteorological variables is however incredibly 

complex; for instance, changes in causative and secondary factors have to be taken 

into account, such as behavioural changes over the seasons and/or in relation to 

daily weather (Kasper et al. 1989) that might alter blood pressure, dietary habits, 

and alcohol intake to name but a few. 

 

4.3.3 Health care costs 

An estimated 2-4% of the total health care costs worldwide are attributed to stroke; 

the UK figure suggest that stroke accounts up to 5% of the total National Health 

Service (NHS) costs - with an annual expenditure of £8.9 billion for primary (e.g. 

hospitalisation, scanning etc.) and secondary care (e.g., unemployment, therapy) 

(Donnan et al. 2008; Saka et al. 2009).  

 

4.4 Cerebral blood supply  

Extracranially, the common carotid arteries have two divisions, the external carotid 

arteries (ECA, supplying face and scalp) and the internal carotid arteries (ICA, 

supplying the anterior three-fifths of cerebrum, hence called anterior circulation). 

The posterior two-fifths of the cerebrum, as well as the cerebellum and the brain 

stem are supplied by the vertebral arteries that unite at the level of the brain stem to 

form the basilar artery (posterior circulation). At the ventral aspect of the brain, 

branches of the ICAs and the basilar artery anastomose to form the Circle of Willis, 

which surrounds the suprastellar cistern and lies below the hypothalamus and third 

ventricles. Rostrocaudal the circle gives rise to the following arterial branches 

bilaterally: anterior cerebral artery (ACA), anterior communicating artery (AcomA), 

middle cerebral artery (MCA), posterior communicating artery (PcomA), and 

posterior cerebral artery (PCA). Each artery is irrigating a circumscribed cerebral 

area and occlusion therefore leads to focal damage to a specific region (Figure 

20A).  

The ACA supplies the olfactory bulb and tract, gyrus rectus, and medial orbital 

gyrus, corpus callosum, cingulate gyrus, medial frontal gyrus, and paracentral 

lobule. The parietal ramifications are responsible for the precuneus (Stefani et al. 

2000). The MCA irrigates the medial aspect of the Sylvian fissure (M1 segment7), 

                                                
7 The horizontal segment extending between the origin of the MCA to the bi-
/trifurcation (or genu). 
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the insular (M2 segment8), the frontal operculum (M3 segment9) and the cortical 

convexity (M4 segment10) (Pai et al. 2007) (Figure 20B). The PCA irrigates 

ventrotemporal regions (uncus, fusiform gyrus) and medial occipital areas (cuneus, 

precuneus, splenium, lingual gyrus) (Figure 20A/B).  

 

Figure 20 Intracranial cerebral arterial blood supply  

A Depicts the blood supply to the lateral convexity and the medial aspects of the brain 
(modified from the Netter atlas). B Shows axial brain slices colour accordingly to the specific 
vessel supply to subcortical and cortical territories. Modified from (Tomandl et al. 2003; 
Kloska et al. 2007). C Demonstrates the origin of the cerebral blood supply from the 
extracranial carotid artery that is then bifurcation into the external carotid artery (ECA) and 
the internal carotid artery (ICA). At the level of the pontine brain stem the vertebrate arties 
are joint as basilar artery. Branches of the ICA and the basilar anastomose to form the Circle 
of Willis. The circle gives raise the following arterial branches: anterior cerebral artery (ACA), 
anterior communicating artery (AcomA), middle cerebral artery (MCA), posterior 
communicating artery (PcomA), and posterior cerebral artery (PCA). Panel C figure also 
demonstrates occlusions (red, blue with varying frequency) and the compensational 
mechanism of collateral flow. Modified from (Mohr 2004).  

Occlusions and ruptures can happen to any of the larger vessels and their small 

branches but certain arterial locations are more prone, such as bifurcations (Figure 

20C). Blockages can be caused by thrombolism (e.g., stationary clot), embolism 

(e.g., detached clot), and stenosis (vessel narrowing of >70% is considered 

                                                
8 The insular segment runs over the insular and divides into 6-8 major branches. 
9 The sylvian segment extending between the insular and the lateral cerebral 
fissure.  
10 The cortical branches extending ramifications over frontal, parietal and temporal 
lobes.  
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haemodynamically significant) (Figure 21). Occlusions within the ICA sometimes 

allow for haemodynamic compensation through collateral blood flow via the ACA 

(A1 segment), the posterior communicating artery, or both within the Circle of Willis 

(Figure 20C, occlusion indicated in red). 

 

Figure 21 Types of ischemic and haemorrhagic strokes. 

4.5 Pathophysiology and clinical manifestations of stroke types  

Arterial occlusion resulting in ischemic stroke constitutes approximately 84% of 

strokes, whereas haemorrhages contribute to approximately 16%. Clinically, a 

stroke is often described by means of the affected artery (e.g., MCA stroke) and 

entails focal negative (i.e. loss of function) neurological symptoms such as motor 

symptoms (e.g., hemiparesis, dysphagia, ataxia), speech and language 

disturbances (e.g., dysphasia, dysgraphia, dysarthria), sensory symptoms (e.g., 

hemianopia, paresthesia), vestibular symptoms (e.g., vertigo) as well as 

behavioural/cognitive symptoms (e.g., amnesia, disorientation) (Figure 22). A 

specialist can, in general, infer the neuroanatomical location of a stroke from their 

patients presenting with focal symptoms. For example, unilateral weakness is 

associated with a lesion to the corticospinal tract, clumsiness frequently with a 

cerebellar lesion, unilateral sensory loss typically affects the spinothalamic tract and 

double vision the occulomotor pathways. An apt clinical diagnosis of stroke, 

depending on the post onset time and experience of the clinician, is estimated in 80-

85% of cases (Group 1997).   
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Figure 22 Schematic arterial occlusions and the corresponding cerebral damage 
and symptoms 

Schematic arterial occlusions, their resulting cerebral damage (lateral and medial view) and 
commonly associated symptoms for the middle cerebral (blue), anterior cerebral (red), and 
posterior cerebral (green) arteries. Adopted from (Mohr 2004). 
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4.5.1 Ischemia  

The aetiopathogenesis of most cerebral ischemia results from one or more of the 

following five mechanisms: embolization from the heart into brain vessels (e.g. due 

to myocardical infarction, mitral valve damage etc.); arterial stenosis; decreasing of 

systemic blood pressure; thromboembolism of large vessels; and decreased cardiac 

output (e.g., due to myocardial contractility, substantive haemorrhage etc). 

Thrombotic occlusions commonly occur at arterial bifurcations. Stenosis precipitated 

by turbulent blood flow, atherosclerosis, and platelet adherence can cause blood 

clots to form. Less common causes, often seen in younger patients, are cervical 

artery dissection, essential thrombocythaemia, polycythaemia, sickle cell anaemia, 

protein C deficiency, and substance misuse (Carroll & Chataway 2006). The 

vasculature can be occluded by emboli (loose blot clots) originating most commonly 

from the heart (cardioembolic) but also from extracranial arteries or through right-to-

left shunts. Mural emboli and platelet aggregates are most commonly embolised to 

the brain. Embolic material is however rather unstable and spontaneous 

recanalization is evident in approximately 52% of MCA (stem and branch) 

occlusions within 48 hours post onset (Mohr 2004). 

Ischemia is a potentially reversible altered state of brain physiology and 

biochemistry subsequent to cessation or restriction of blood flow delivery resulting in 

a drop below the normal values (cortex, 0.8ml/g/min; white matter, 0.2ml/g/min). 

The brain may be protected against a focal disturbance of the blood supply by the 

collateral vessels (Figure 20C). Anastomotic connections between the carotid and 

vertebral arteries provide a collateral system able to compensate for the occlusion 

of up to three of these arteries. If however perfusion pressure drops to critical levels, 

ischemia develops, progressing to infarction if the constriction endures. The critical 

threshold for failure of neuronal electrical function is below 30% of the normal blood 

flow, and below 10% for the failure of energy metabolism and ion pumps, which 

results in the breakdown of cell membrane integrity (Astrup et al. 1981). This 

cascade is triggered by the halt of neuronal protein synthesis, the cessation of 

electrical activity and finally the interruption of cell membrane integrity leading to 

neuronal death. In recent years, drugs to restore perfusion have been developed 

(see 4.6). The infarct size partially relies on the integrity of the collateral blood 

supply. 

The concept of an ischemic penumbra has gained increasing attention recently, 

even though the theory has been around for centuries (see 4.1). Penumbra 

describes an area of reduced blood flow (between 0.10-0.23ml/g/min) where 



Part I. Introduction  Stroke 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 125 

 

functional activity of neurons is suppressed (low cerebral blood flow and electrical 

failure) although metabolic activity for maintenance (cellular homeostasis) of 

structural integrity of the cell is preserved (high oxygen extraction fraction, OEF and 

cerebral metabolic rate of oxygen, CMRO2) (Kumar et al. 2010). The neurons within 

this area may remain viable for several hours after symptom onset due to the 

collateral supply and the area tends to decrease over time. ‘The extent of the 

ischemic penumbra is time-dependent. It decreases over time by gradual 

recruitment into the core, and represents a key target for therapeutic intervention’ 

p.15, (Kumar et al. 2010) (Figure 23C). 

Focal cerebral ischemia due to blood flow deprivation initiates a complex 

pathophysiological ischemic cascade resulting in excitotoxicity, peri-infarct 

depolarisation, inflammation and eventually apoptosis (‘programmed cell death’). All 

of these steps are potential targets for therapeutic interventions. 

With supply depletion, the membrane potential cannot be maintained and neurons 

and glia cells depolarise. As a result, voltage-dependent calcium (Ca2+) channels 

become permeable leading to the release of excitatory glutamate whilst energy-

dependent processes are impeded (e.g., postsynaptic neurotransmitter uptake), 

leading to excess accumulation of glutamate in the extracellular space (Figure 

23B). Likewise, the activation of glutamate receptors leads to Ca2+ and sodium 

(Na+) influx. This glutamate-mediated over-activation results in cellular influx of Na+, 

chloride (Cl-), and water. The ensuing oedema affects the local perfusion and has 

potentially remote effects due to increased intracranial pressure, vascular 

compression, and herniation. Excess intracellular calcium initiates various injurious 

enzymatic pathways, such as proteases, lipases, and endonucleases together with 

the release of cytokines. Calcium accumulation within the mitochondria, which 

initially partially sequester calcium, is correlated with enhanced free radical 

production, which in turn leads to membrane disruptions (fluidity and permeability) 

and damage to the cytoskeletal integrity. This cascade of second messenger 

activation, free radical production, and hypoxia triggers the expression of 

proinflammatory genes (Dirnagl et al. 1999). This is followed by peri-infarct 

spreading depolarisation that facilitates the gradual expansion of the core region 

into the penumbra. The inflammatory response engulfs residual cells and within six 

hours post onset, astrocytes become hypertrophic, whilst microglial cells assume a 

morphology that is typical of activated microglia. Within a day of a MCA occlusion 

the microglial reaction is well developed in the ischaemic brain, particularly in the 

penumbra (Dirnagl et al. 1999). 
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Figure 23 Ischemic cascade and penumbral evolvement over time 

A shows the time-dependent dynamic influences of excitotocity, peri-infarct depolarisation, 
inflammation and apoptosis. B shows the intra- and extracellular signalling cascade initiated 
by the ischemic insult (from (Katramados & Vareals 2007; Dirnagl et al. 1999)). C shows the 
schematic dynamic evolvement of stroke core and penumbra following a middle cerebral 
artery (MCA) occlusion. Adapted from (Dirnagl et al. 1999). 

 

4.5.2 Haemorrhage 

Intracranial haemorrhage may affect the brain parenchyma classified as 

intracerebral haemorrhage (ICH) or the surrounding meningeal spaces classified as 

subarachnoidal haemorrhage (SAH) (Figure 21).  

Primary ICH accounts for an estimated 10-15%, whereas SAH accounts for 5% of 

strokes in western countries. In Asia and amongst Afro-Caribbean the proportion is 

estimated to be between 30-40%. ICH is the result of bleeding from an arterial 

source directly into brain tissue. The primary loci are subcortical structures such as 

the putamen (35-50%), white matter (~30%), thalamus (10-15%), and pons (5-12%) 

(Mohr 2004); These areas are predominantly supplied by small deep arterial 

branches (50-200µm). The principal causes of primary non-traumatic ICH is arterial 

hypertension and amyloid angiopathy, whereas secondary ICH can be caused, for 

example, by intracranial aneurysms, arteriovenous malformations, intracerebral 

tumour, arterial dissection, substance misuse (Hankey 2007; Carroll & Chataway 

2006). Hypertension-induced strokes commonly affect the basal ganglia, thalamus, 
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brain stem and cerebellum whereas secondary ICH more frequently affects lobar 

regions (Carroll & Chataway 2006). SAH is caused by the rupture of an intracranial 

saccular aneurysm in 80% of cases. Although abrupt in onset the stroke is 

frequently a manifestation of underlying long-standing unidentified processes 

(Katramados & Vareals 2007). Upon symptom onset patients tend to present with 

reduced levels of consciousness, nausea, and headache. 

 

4.6 Acute treatment: Recombinant tissue plasminogen activator (rtPA) and 

endovascular thrombectomy 

The ischemic cascade described above (chapter 4.5.1) can be altered in some 

cases by the intravenous or intra-arterial administration of an enzymatic agent, a 

genetically engineered version of naturally occurring tissue plasminogen activator 

manufactured via recombination biotechnology (from bacteria) and is therefore 

called recombinant tissue plasminogen activator (rtPA). rtPA is a protein that 

activates the enzyme plasminogen and it causes fibrinolysis to dissolve the 

occlusive blood clot by breaking the cross-linked fibrin mesh. This renders the clot 

soluble and further enzymatic processes can resolve it to resume cerebral perfusion 

and supply of oxygenated blood. Recent investigations focus specifically on the 

penumbral region as the tissue is affected by the occlusion but may still be 

salvageable. Perfusion computer tomography (CT) imaging has proven to be a 

good tool for estimating penumbral tissue by demonstrating a mismatch between 

the extent of the core region and the hypoperfused tissue. Early recanalisation is 

beneficial for functional outcome and mortality rates (Smith 2007b). 

More recently it was shown that rtPA has a substantial efficacy when given within a 

maximum of 4.5 hours post onset, especially for distal thrombi (Latchaw et al. 

2009); however, the odds of a favourable outcome decreased thereafter and may 

even be harmful after a certain period of time (Hacke et al. 2008). The benefits of an 

extended treatment window within selected cohorts is currently under investigation, 

for example at King’s College Hospital (KCH) (Sztriha et al. 2011). London is 

covered through eight hyperacute stroke centres with KCH covering a catchment 

area of 1.5 million people. The KCH records between 2008 and 2010 show a rise in 

rtPA treatments from 25% of all admissions in January 2008 up to 41% in July 

2010. In general, it was shown that aphasic stroke patients are more likely to 

receive thrombolysis treatments (Engelter et al. 2006). 
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The guidelines of thrombolysis treatment are still stringent and lengthy, and the 

licence of the drug contains numerous restrictions. Investigations are underway to 

answer to the following difficulty: ‘The burning question is no longer whether 

thrombolysis is effective, but in whom it is effective, in whom it is ineffective and in 

whom it is dangerous’ p. 240, (Hankey 2007). 

Some patients are ineligible for rtPA treatment for various reasons, such as late 

presentation to the hospital or increased risk of symptomatic haemorrhage due to 

the blood thinning properties of the rtPA. In a subset of these patients a mechanical 

approach to remove the occluding thrombus might be considered. This treatment is 

based on the introduction of microcatheters into the vessel, that are used to guide 

the wire to occlusion site and allow for the thrombus to be removed either through 

suction or withdrawal. This is referred to as mechanical thrombectomy. Historically 

this method was introduced for coronal vessels and was pioneered by the German 

physician Werner Forssmann who conducted a self-experiment whereby he 

introduced a catheter from his antecubital vein in the elbow into the right atrium 

(Forssmann 1929). The incentive for this endeavour was the need for intracardiac 

injections for cardiac resuscitation at a time where direct cardiac injections were 

more often than not fatal. Forssmann changed speciality after being made 

redundant for his ‘cavalier’ approach but subsequently received a Nobel Prize in 

1956 [jointly awarded to André Cournand and Dickinson W. Richards] "for their 

discoveries concerning heart catheterization and pathological changes in the 

circulatory system" (http://www.nobelprize.org). 

Recanalisation of cranial vessels can be achieved via proximal or distal mechanical 

endovascular neurothrombectomy in some patients by means of a so-called stent-

retriever. In contrast to stents the retriever is only temporarily introduced into the 

vessel. The differentiation between distal and proximal approaches is the location of 

the applied force on the thrombus. Proximal devices apply the force at the base of 

the thrombus where the catheter tip is placed into the clot and a blood-thinning drug 

is directly administered locally (aspiration catheters). This breaks down the blood 

clot that can then be sucked away through the microcatheter. Distal devices 

propagate the tip of the microcatheter past the thrombus to be unsheathed behind 

it, and thereby applying the force to the distal base of the thrombus and removing 

the clot by withdrawing the catheter (coil-like devices). Microcatheters are also used 

to place stents, which are mesh tubes inserted into a vessel to ensure it cannot 

close up again. In the absence of human in vivo comparative studies, a comparative 

swine study described the proximal approach to be superior in application speed, in 
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the ability to repeat attempts, and low complication rate; whilst distal approaches 

are superior in the removal of thrombotic material but with an increased risk of 

thromboembolic events and vasospasms (Gralla et al. 2006). Mechanical 

thrombectomy was seen to be beneficial in some patients due to its wide time frame 

of application, the treatment success and the low risk of symptomatic haemorrhages 

as well as the reduced mortality after treatment (Versnick et al. 2005; Nogueira et 

al. 2012). 

 

In conclusion, stroke and its associated risk factors have been clinically well 

circumscribed for a long time. More recently, international comparative studies 

showed that underlying genetics, geography, and comorbid disorders might 

influence the occurrence and severity of stroke symptoms. The exact nature of 

recovery is yet to be elucidated, especially for higher cognitive functions. In recent 

years thrombolysis is the only available acute treatment that has yielded compelling 

positive results for functional short and long-term outcome after stroke. However, 

questions still remain to be answered regarding the general applicability of the 

treatment, treatment alternatives and predictive factors for recovery. 
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CHAPTER 5 MR-BASED NEUROIMAGING 

‘The tendency to reify language into something material is perhaps 
nowhere more subtly treacherous than when imaging techniques 

are applied’ 

(Rodden and Stemmer, 2006) 

 

5.1 General principles of Magnetic Resonance Imaging (MRI) 

In the imaging sciences, the first wave of enthusiasm was elicited by the discovery 

of x-rays by the German physicist Wilhelm Conrad Roentgen (1898). For the first 

time in the history of medicine it was possible to investigate the internal human body 

in vivo whereas before only post mortem examinations had allowed the study of the 

internal anatomy and pathological alterations. Nowadays, computer tomography 

(CT) or magnetic resonance imaging (MRI) are the most commonly used 

techniques for neuroimaging, which are particularly apt for neuroscience research 

and clinical applications due to their high resolution and timely acquisition whilst 

having minimal side effects.  

‘No other technique [than MRI] has proven to be so uniquely flexible and dynamic’ 

p. 291, (Toga et al. 2000). MRI has revolutionised our approach to neurosciences 

by allowing the investigation of neuronal tissue in vivo and non-invasively (in most 

cases) with a relatively high spatial resolution. The concept of nuclear magnetic 

resonance (NMR) was simultaneously and independently discovered in the mid-

1940s by Bloch (1946) and Purcell (1946), for which they shared the Nobel Prize. 

However, it was not until 1973 that the possibility of obtaining images with magnetic 

resonance (MRI) based on the NMR phenomenon was first described (Lauterbur 

1973; Mansfield & Pykett 1978) and only in the 1980s that MRI emerged as a 

clinically useful diagnostic tool for stroke (Bydder et al. 1982; Ramadan et al. 1989; 

Brant-Zawadzki et al. 1983). MRI has since been employed for structural, functional, 

pharmacological and perfusion investigations, angiographies, MR elastographies 

and many more. The past 40 years have witnessed the increase in field strengths of 

scanners, new contrast weighting and improved spatial resolutions. Below, the 

basics of MRI will be explained (on a conceptual rather than quantitative level) 

followed by a methodological introduction to diffusion-weighted imaging (DWI) and 
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tractography. These methodological concepts are then discussed in the light of 

stroke and aphasia research. 

 

5.1.1 General principles of MRI and basic pulse sequences 

The human body is composed of copious water molecules (H20), which consist of 

two hydrogen atoms (H) and one oxygen atom (O). At the centre of hydrogen atoms 

is a positively charged proton (H+) that contains spin, causing it to precess, around 

its own axis. This nuclear spin is represented as a three-dimensional vector in a 

coordinate system (x, y, z) (Figure 24A). Protons generate a minute magnetic field 

due to their spin and positive charge (magnetic dipole vector) and are therefore 

sensitive to environmental magnetic fields. In the absence of an external applied 

magnetic field, magnetic dipoles such as the hydrogen atom have no preferred 

orientation. In the presence of a magnetic field spins start to precess around the 

magnetic field. This phenomenon is referred to as Larmor precession. The spins 

precess about B0 at a frequency 𝑣 defined by the Larmor equation: 

𝑣 = 𝛾𝐵!   

with 𝑣 being the frequency of precession, 𝛾 

is the gyromagnetic ratio (with a value of 

4257Hz/gauss pro proton), and 𝐵! is the 

magnitude of the magnetic field. 

 

5.1.1.1 Main magnetic field (B0) and radiofrequency pulses 

MRI utilises these natural magnetic properties of the human body and their 

interaction with radio waves to obtain images. MRI scanners are strong magnets 

that create a magnetic field. The main magnetic field of the MRI scanner is a strong 

and static field referred to as B0 and aligned to the z-axis, typically defined to point 

along the bore of the scanner. A suitable magnetic field in MRI depends on two 

prerequisites, namely the field uniformity (homogeneity) and the field strength. 

Homogeneity over space and time allows us to obtain images that are independent 

of the type of scanner used or where the head is positioned within the bore. The 

field strength is the magnitude of the static magnetic field generated by the scanner 

and is measured in units of tesla (T), which equals 10,000 Gauss. Homogenous and 

stable field strengths are available in the range of 1.5 to 11T for human use, and up 

to 24T for animal use. Common scanner strengths for humans, however, range 
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between 1.5-3T in the clinical arena and up to 7T for research purposes. Patients 

are placed at the centre of the magnetic field (isocentre) and the protons contained 

within brain tissue become polarised aligning themselves either parallel or 

antiparallel with the external main magnetic field B0 (Figure 24B); with a slight 

excess in parallel alignment. 

This alignment to B0 along the z-axis can be manipulated by excitation via the 

application of radio frequency pulses (RF), which momentarily creates a second 

magnetic field (B1). Excitation means that the total magnetisation vector formed by 

the spins (i.e. their total alignment) is tilted out of alignment with B0 (e.g., away from 

the longitudinal magnetisation along the z-axis towards the x-y plane), either 

perpendicular (90°, also known as the transverse magnetisation) or antiparallel 

(180°) (Figure 24C). Technically, any angle rotation of the net magnetisation vector 

into the transverse plane can be achieved; depending on the duration and 

amplitude of the RF pulses applied. The amount of tilting is denoted as the flip angle 

θ. When this RF excitation terminates, protons realign with the main magnetic field 

B0 by emitting energy. The time it takes to reach their original orientation (i.e. 

realign) can be measured with MRI. 

The radiofrequency pulses are generated and received by electromagnetic coils, or 

radiofrequency coils, that produce and gather electromagnetic fields at the resonant 

frequencies of the atomic nuclei (Larmor frequency) within the static magnetic field. 

The coil is placed around the head of the participant. The signal recovered by the 

coil depends on the type of coils used (surface or volume coil, phased array) which 

impacts on the spatial coverage and sensitivity.  

These surrounding receiver coils are detecting currents, generated by placing a 

participant in a strong static magnetic field and exciting its atomic nuclei through RF 

pulses. These detected currents are the MRI signal but are devoid of spatial 

information and are thus not sufficient to reconstruct an image. To add the spatial 

information magnetic gradients need to be introduced. 

This third set of magnetic fields, called the magnetic field gradients otherwise often 

simply referred to as gradients, are auxiliary gradients superimposed upon B0 and 

applied along the x, y, z coordinate system. Separate gradient coils that can modify 

the strength of the magnetic field along specific directions, by either increasing or 

decreasing the strength, recover the spatial information (details below). Thus far we 

assumed that the static magnetic field of the scanner is homogeneous, which in 

reality is unfortunately rarely true. To correct for this a final set of coils, so called 
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shimming coils, are in place. The shimming coils can generate compensatory 

magnetic fields to correct the inhomogeneity in the static magnetic field. 

 

Figure 24 Physical concept of Magnetic Resonance (MR) 

A Random thermodynamic precession motion of hydrogen protons around their own axis. B 
When a person is introduced to the magnetic field of a MRI scanner (B0), protons align to the 
main magnetic field. C This coherent alignment can be manipulated via the application of a 
radio frequency (RF) pulse through the RF coil. This tilts protons away from B0 towards a 
higher energetic level.  

5.1.2 Longitudinal and transverse relaxation  

Application of a B1 field orthogonal to B0 causes the nuclear magnetisation vector to 

be flipped away from the longitudinal (z) axis onto the transverse (x-y) plane 

(Figure 24C). When the applied B1 field is switched off, the magnetisation in the x-y 

plane reduces due to three factors: i) transverse relaxation (T2), ii) longitudinal 

relaxation (T1), and iii) variation in the B0 field (i.e. B0 inhomogeneity). These MR 

signals are detected through the radiofrequency coil and do not remain stable for a 

very long time. During signal reception the transverse magnetisation rapidly loses 

coherence (transverse decay), and the longitudinal magnetisation slowly recovers 

(longitudinal recovery). These signal changes are referred to as relaxation. The 

relaxation time (TR; i.e. the time between excitation and realignment back to B0) is 

characterised by T1 (longitudinal) and T2 (transverse) relaxation as explained below 

and in Figure 25.  

The longitudinal recovery ranges in the order of a few hundreds of milliseconds to a 

few seconds, and is hence considered relatively slow compared to the transverse 

signal decay. Atoms of different cerebral tissues recover at different times, based on 

how the tissue dissipates energy, which allows for tissue differentiation based on T1 

recovery time (Figure 25, left). Depending on how fast the next RF pulse is applied 

the T1 signal might have fully recovered or might still be recovering. The delay 

between the applications of two pulses in the same volume is referred to as the 
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repetition time (TR). T1-weighted images have a short TR (300-800 milliseconds) 

emphasising the effects of T1 relaxation on the image. 

 

Figure 25 Longitudinal (T1) and transverse (T2) relaxation 

The upper panel shows the recovery of net magnetisation (left) and the decay of transverse 
signal (right) in two different tissue types (blue and orange). The relaxation times are tissue-
dependent and the time point of imaging is therefor crucial (dashed lines, 1-3). This is 
exemplified for both relaxations where at time point 1 no differentiation between tissue types 
is possible, at time point 2 the tissue contrast is very high and at time point 3 the tissue 
contrast is again low (consider the different time scales (s/ms) in this model). By adjusting 
these time points images can be weighted towards the T1 or T2 contrasts. The lower panel 
depicts the conceptual relaxation (in correspondence with upper panel) with reference to the 
coordinate system.  

T2-weighted imaging on the other hand measures the signal decay (or loss of 

coherency between precessions) within the transverse plane (x-y plane; Figure 25). 

Here the net magnetisation reflects the vector sum of various individual spins and 

the magnitude is therefore dependent on the underlying coherence, meaning that 

the greater the coherence the greater the net magnetisation. Over time the 

magnetisation along the transverse plane reduces due to the local field interactions 

of nuclei rendering them to spin at different frequencies. This randomisation of spins 

(or dephasing) leads to a reduced vector sum along the x-y plane and results in a 

loss of image signal occurring with a time constant known as T2. Additionally, 

spatial inhomogeneities in the magnetic field can also influence the spins by 

exposing them to different magnetic fields over time. This results in some spins 

precessing faster than others. The combination of spin-spin interactions and 

additive field inhomogeneities is described by the time constant T2*. Both T2 

contrasts are related yet T2 decay is always longer than T2* decay. 
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T2-weighted images allow a long time (~100-500 milliseconds) between excitation 

and signal collection, which ensures high tissue contrast, and a long TR (>1 

second) to ensure T1 contrast is not dominant in the image signal as the 

longitudinal recovery is almost complete. The duration of signal decay in tissue 

where water can freely move (e.g., ventricular system) is longer than in restrictive 

tissue (e.g., axonal structures). 

 

5.1.3 Spin Echo effect 

As described above MR images are acquired by a fine tuned on-off interaction of 

radiofrequencies in a prescribed sequence, referred to as pulse sequence. This 

pulse sequence determines the image contrast, its resolution, and quality. After a 

RF pulse is applied, net magnetisation is flipped onto the transverse plane and over 

time spins begin to dephase (as described above).  

If a pulse of resonant radio frequency close to the Larmor frequency of the nuclear 

spins is induced and the net magnetisation is flipped onto the transvers plane the 

initial very fast decaying signal is the so–called free induction decay (FID). 

This dephasing is elicited by different precessing speeds of spins. In order to realign 

them to each other, a second RF pulse is applied at a given time (t) after the initial 

excitation to eliminate spin dephasing. This so-called refocusing RF pulse flips the 

spins in the perpendicular plane to the main magnetic field (i.e. 180 degrees), which 

aligns the faster precessing spins behind the slower precessing spins. Assuming 

constant conditions, all spins will re-phase at a given time (2t). This moment of spin 

coherence is referred to as spin echo. The time between the first RF pulse and the 

formation of the echo is referred to as the echo time (TE) and is defined as twice the 

time (t) between the two RF pulses (2t).  
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Figure 26 Spin Echo Imaging (schematic). 

Sequences that utilise refocusing pulses are indicated as spin echo pulse 

sequences, whereas those that do not are denominated as gradient echo 

sequences. Manipulating the TE and TR parameters (TE/TR) will change the 

obtained imaging contrasts towards a T1 or T2-weighted image (see below). 

 

5.1.4 Image generation 

5.1.4.1.1 Slice selection (gradients) 

All atomic nuclei exposed to an excitation pulse will contribute to the signal detected 

in the coil. A first step towards image generation is therefore the slice selection. As 

mentioned before, the spatial information is added to the image by the application of 

auxiliary magnetic field gradients, that are spatially varying magnetic fields 

superimposed upon B0. The precession frequency is proportional to the strength of 

the magnetic field. Given that the gradients vary spatially they cause atoms to spin 

at different rates in different spatial locations (Figure 27). Therefore, this spatial 

specificity can be used to select different image components of different frequencies 

and generate a spatial map thereof. 

Selective excitation of spins within that particular slice but not other spins within the 

probed tissue is the pivotal step to slice selection. This selectiveness is achieved by 

matching the radio frequency excitation pulse and the precession frequency of the 

spin within the slice.  Excitation of spins occurs when the RF is applied at the 
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Larmor frequency. In the presence of a linear gradient, the Larmor frequency 

changes along the gradient (Figure 27). A slice of spins is excited with an 

orientation perpendicular to the applied gradient. Slice selection is therefore the 

result of the simultaneous application of a linear magnetic field gradient and an RF 

pulse.  

 

Figure 27 Magnetic field Gradient (Gz) application for slice selection 

Obtaining the spatial information as described above will however only provide a 1D 

image. Given that the brain is a three-dimensional organ, spatial information has to 

be resolved in three directions, which requires at least three gradients applied along 

the three axes of the coordinate system as described below (Figure 28).  

 

Figure 28 Resolving spatial information in three dimensions  

Resolving spatial information through the use of orthogonal gradients. Adapted from (Huettel 
et al. 2009) 
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The systematically spatially varying magnetic field strength is utilised to select a 

specific brain slice (plane) by exciting or refocusing the spins perpendicular to the 

gradient. The thickness of the excited slice depends on the frequency bandwidth of 

the RF pulse and the strength of the gradient. 

Slice selection produces a 2D slice of the brain. The remaining dimensions need to 

be resolved in order to create a 3D brain image. This is achieved by introducing 

additional gradients onto the selected slice that cause spins at different locations to 

precess at different rates owing to the spatially varying strength of the gradient. This 

allows us to obtain the individual spin contributions to the signal. This pattern of 

radiofrequency pulses produces a complex MR signal that can then be resolved 

with the Fourier transformation. The mathematical foundations of image formation 

are beyond the scope of this chapter but follow the Fourier transformation.  

 

5.1.4.1.2 Frequency encoding 

Is the additional linear magnetic gradient present during the data acquisition 

causing the precessional frequencies of spins to change linear over space, this is 

referred to as the frequency-encoding gradient (usually indicated as Gx). The signal 

is encoded into different frequencies depending on their position toward the 

frequency-encoding gradient. In the presence of the gradient, the protons will have 

distinct precession frequencies, at one end of the slice protons precess faster than 

the protons at the other end, and the measured frequency reflects the position along 

the frequency-encoding gradient. If for example the gradient is applied left to right 

(x-axis) the spins on the left will have higher resonance frequency than the tissue on 

the right; this measured frequency thus reflects the position along the frequency-

encoding gradient. Signal processing tools can dissolve these different frequencies 

and thereby map the physical distances between imaged structures.  

 

5.1.4.1.3 Phase coding 

Upon slice selection, all excited spins contribute to the MR signal. All protons within 

the single two-dimensional slice are processing at the same rate allowing the 

conclusion that there are protons within the slice but not where exactly they are 

located therein. To disentangle the individual contributions of spins additional 

gradients are applied along the two in-plane directions (x-y plane) defining the 

excited slice. This causes the spins at different spatial locations to precess at 

different times. The application of magnetic gradients within a slice involves two 
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intertwined processes, referred to as frequency encoding and phase encoding. 

These two gradients must be applied sequentially. 

The phase-encoding gradient (usually referred to as Gy) is typically applied 

perpendicular to the slice-encoding gradient as a linear spatial variation, prior to the 

data acquisition period (read-out) and allows spins to accumulate differential phase 

offsets over space (Figure 29). The phase is ‘the angle made by the transverse 

magnetisation vector with respect to some fixed axis in the transverse plane’ p. 256, 

(Bernstein et al. 2004). 

 

Figure 29 Pulse sequence elements necessary for phase and frequency encoding 
within a selected slice 

The RF pulse is needed to excite protons and an initial slice selection is applied at a specific 
Larmor frequency. Additional linear magnetic field gradients are applied to obtain spatial 
information along the x-y plane of the reference frame. The phase encoding gradient usually 
proceeds the frequency encoding gradient, which is applied during the period of data 
acquisition (read-out). Adopted from (Huettel et al. 2009). 

5.1.4.1.4 Echo-planar imaging (EPI) 

In 1976 the British physicist Peter Mansfield proposed a technique that allows for 

the collection of an entire image slice at once, by sending one RF pulse followed by 

rapid alterations of the magnetic field gradients during signal recording. This 

technique has been introduced as echo-planar imaging (EPI) and allowed for 

ultrafast image acquisition that improved the feasibility of clinical MR imaging. EPI is 

the fastest acquisition method for MRI but compromises spatial resolution. EPI is 

the primary method of acquiring diffusion-weighted data as it significantly reduces 

data corruption through motion artefacts in robust DW images (Jones & Cercignani 

2010). The issues around motion artefacts and how to further reduce them will be 

discussed in more detail in the study-specific chapter of this thesis. On the other 

hand, the rapid read-out in EPI increases the risk of eddy current effects and 

susceptibility effects (commonly in the temporal lobes) (Jones & Cercignani 2010). 

These issues can be partially corrected for during the data pre-processing stages. 

RF pulse excitation

Slice-encoding gradient (Gz)

Frequency-encoding gradient (Gx)

Phase-encoding gradient (Gy)

Read-out
Read-out
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The reconstruction of the obtained complex signal into an image lies beyond the 

scope of this chapter. 

 

5.1.5 Structural imaging contrasts 

5.1.5.1 T1-weighted imaging 

T1-weighted imaging is based on the mechanism whereby nuclei, which received 

energy through RF pulses, dissipate that energy to their adjacent environment and 

return to their equilibria along B0. This realignment leads to the gradual recovery of 

net magnetisation along the longitudinal z-axis (Figure 25). On T1-weighted images 

cerebral spinal fluid (CSF) is hypointense (i.e. dark), fat appears hyperintense (i.e. 

bright), grey matter has less intensity than white matter (i.e. it appears darker), and 

chronic ischemic lesions appear hypointense (Figure 30). 

 

5.1.5.2 T2- weighted and T2*-weighted imaging 

The T2-weighted image has its maximal signal intensities in fluid rich regions of the 

brain, such as the ventricles (Figure 30). Regions with slow T2 relaxation time are 

hyperintense on the obtained image. CSF is consequently hyperintense, fat barely 

has a signal, grey matter appears brighter than white matter, and ischemic lesions 

and oedema appear hyperintense. In this contrast it might be difficult to distinguish 

a lesion from normal CSF, especially for smaller lesions. 

 

5.1.5.3 Fluid Attenuated Inversion Recovery (FLAIR) 

An image contrast that is better suited to distinguishing between CSF and lesions is 

FLAIR imaging (Hajnal et al. 2001). The CSF signal is nulled in these images by the 

application of an initial RF pulse (inversion pulse) prior to the standard imaging 

pulses. This renders the CSF signal almost entirely suppressed and it appears dark 

on the final image, whereas lesion tissue will appear hyperintense as on the T2-

weighted (Figure 30). This contrast is therefore well suited to detect lesions in 

border zones of different tissue types, such as cortical and periventricular lesions. In 

the stroke arena, FLAIR, even though slightly longer in acquisition time, is often 

used in preference to a standard T2-weighting, as haemorrhages and arterial 

occlusion are also shown as hyperintense and are therefore readily detectable. 
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5.1.5.4 Proton density map (PD) 

Proton density, or sometime referred to as spin density, reflects the concentration of 

MRI-visible protons in cerebral tissue (Figure 30). The majority of protons (i.e. 

hydrogen nuclei) are present in all tissue water (e.g., the cerebral spinal fluid). The 

cerebral white matter also contains numerous non-aqueous protons (30% of white 

matter protons). PD-weighted contrasts are therefore tissue-dependent. The net 

magnetisation in proton density-weighted contrasts reflects the contribution of all 

spins within each voxel and provides an image representing the number of protons 

within each voxel. To maximise the PD contrast, the T1 and T2 contrasts are 

minimised by manipulating the TE and TR windows, with a short TE to minimise the 

T2 losses whilst a long TR to minimise T1 losses. 

 

Distinctive tissue types (grey and white matter, cerebral spinal fluid, and abnormal 

tissue) will relax differently after excitation resulting in varied signal responses. The 

MR image represents a display of these spatially localised signal intensities where 

the difference in amplitudes of the released energy from the various tissue types 

translates into different contrasts in the images (i.e. hypo- or hyperintense). 
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Figure 30 Common structural imaging contrasts  

T1-weighted, T2-weighted, T2 FLAIR, and proton density maps (PD). Images are taken from 
study data. 

 

5.1.6 Physiological pulse sequences 

Whilst conventional sequences provide purely anatomical information, more 

recently implemented sequences can extract functional and physiological 

information. These include various contrasts of which the following two will be 

discussed in detail below as they have been employed for the study at hand: 

perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI). 

  

5.1.6.1 Perfusion-weighted Imaging (PWI) 

The brain is in constant demand for oxygen and nutrition, which are provided 

through the bloodstream. This irrigation of cerebral tissue via hematologic delivery 

is referred to as perfusion. Perfusion, defined as the volume of blood travelling 

through a tissue mass over time, is tissue-dependent: grey matter perfusion is 

approximately 60mL/100g/min and white matter is about 20 mL/100g/min (Huettel et 

al. 2009). 

Until recently, cerebral perfusion was only measurable by H20-15 PET or by 

injecting exogenous intravascular contrast agents (e.g., gadolinium) into the blood 

stream. The resulting signal attenuation is proportional to the amount of contrast 

agent present within the voxel. A recent non-invasive MR advance uses radio 

frequency pulses to electromagnetically “label” arterial blood water as an 

endogenous diffusible tracer to measure the absolute cerebral blood flow (CBF) (D. 

Roberts et al. 1994) (Figure 31). This method is thus referred to as arterial spin 

T1-weighted T2-FLAIRT2-weighted proton density
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labelling (ASL) and can be acquired via pulsed or continuous labelling (Detre & 

Alsop 1999; Alsop & Detre 1998); the latter (cASL) was used in the study at hand. 

Continuous ASL saturates spins in upstream blood within the carotid arteries of the 

neck through RF labelling with magnetic inversion. The labelled blood then travels 

to the brain and enters the imaging slice. A second set of images is acquired in the 

absence of the labelled blood. The difference between those two sets of images is 

the absolute blood flow, as all other tissues should be similar (Figure 31). 

Regardless whether the ASL was acquired pulsed or continuous, the labelling of 

blood alters the longitudinal magnetisation selectively. To obtain a maximal signal 

difference between the two sets of acquired images (labelled and non-labelled), a 

short TE is necessary to minimise signal loss due to T2 and T2* relaxation effects.  

Even though this method is still in its infancy, and rarely clinically applied, its spatial 

and temporal resolution and non-invasiveness outperform previously used methods, 

such as PET (Wong et al. 1999). A handful of studies have investigated the 

comparability of ASL to previously used invasive methods and have provided 

converging evidence that ASL correlates if not supersedes these methods (Chalela 

et al. 2000; Deibler, Pollock, Kraft, Tan, Burdette & Maldjian 2008a; Deibler, 

Pollock, Kraft, Tan, Burdette & Maldjian 2008b). 

 

Figure 31 Continuous arterial spin labelling (cASL) 

The panel depicts the schematic methodological cascade for continuous ASL with the 
demonstration of a post stroke left middle cerebral artery territory hypoperfusion 
(radiological view, i.e. left is shown on the right; own data taken from the same patients as 
in Figure 30). 
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5.1.6.2 Diffusion-weighted imaging (DWI) 

The advantages of MRI scanning in ischemia have been recognised since the 

1980s (Brant-Zawadzki et al. 1985), however, the T1 and T2 contrast of the lesion 

evolves during the first 12-24 hours which leads to inaccurate measures and is 

often reported negative (i.e. as normal) in the acute phase (Mohr et al. 1995). 

Diffusion sensitive images were shown to be superior over conventional contrast for 

the early post-ictal hours (Moseley et al. 1990; Baird & Warach 1998). This 

discovery was crucial as the first six hours are considered as the period with the 

greatest therapeutic opportunities for treating ischemia (e.g., thrombolysis 

treatment). Additionally, the development of Echo Planar Imaging (EPI) allowed for 

a fast whole-brain acquisition time and thereby reduced some artefacts (induced for 

example by head movements) and improved the feasibility of rapid acute clinical 

scanning (Stehling et al. 1991; Mansfield & Pykett 1978). 

DWI is based on the measurement of the displacement of water. In a free medium, 

the displacement of water molecules obeys a three dimensional Gaussian 

distribution over a given time; meaning that water molecules travel randomly but 

equally in all direction over a distance that is statistically defined as the diffusion 

coefficient (D).  

𝑟2 = 6𝐷∆ 

Where 𝑟2 is the mean-squared displacement of particles 

during a diffusion time ∆, and D is the diffusion coefficient. 

 

D depends on the size of the molecules as well as the nature (e.g., viscosity) and 

temperature of the environment. This phenomenon is often referred to as Brownian 

motion (or ‘diffusion’) paying credit to the first scientist to have observed it in a Petri 

dish (Jones 2008; Le Bihan et al. 2006). If water molecules were not hindered by 

cellular structures (e.g., cell membranes, cytoskeleton, macromolecules) they would 

diffuse at an equal rate in all directions in a given time (isotropic diffusion). DWI 

measures this displacement of water over time within a three-dimensional space, 

such as the imaged voxel (volumetric pixel). MR images are made sensitive to 

diffusion by the application of two gradient pulses, the so-called diffusion gradients 

whose duration and separation can be manipulated. Whereas the first applied 

gradient labels the protons in space along a specific direction defined by the 

gradient, the second gradient detects nuclei that have changed location during the 

defined time interval (i.e. diffused). This displacement of water molecules can be 
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measure along different directions by applying varying diffusion gradients. The 

signal attenuation of diffusion-weighted images measured along a gradient direction 

is quantitatively related to the degree of phase variation and therefore to the 

amplitude of the displacement distribution. On diffusion-weighted images CSF 

therefore appears hypointense and ischemic tissue appears hyperintense (due to 

reduced parenchymal diffusion). The level of induced sensitivity to diffusion 

generated by the imaging sequence is referred to as the b-value; a value that can 

be manipulated to optimise sequence acquisition (Jones et al. 2002). The higher the 

b-value, the higher the sensitivity to diffusion (Le Bihan 2012). Mathematically, the 

b-value is proportional to the square of the applied gradient strength (Basser & 

Oezarslan 2009). 

𝑏 = 𝛾!𝐺!𝛿!(Δ −
𝛿
3
) 

Where 𝛾 is the constant (cyromagnetic 

ratio), 𝛿 represents the duration of the 

gradient, 𝛥 the separation of gradient and 

𝐺 the amplitude of different gradients. 

 

5.1.6.3 Apparent diffusion coefficients (ADC) maps 

In neuronal tissue, the above-described molecular displacement differs from the 

Brownian motion due to the presence of cellular obstructions. These reduce 

diffusion distances unevenly in the three-dimensional space as compared to free 

water. The water molecule movements in brain tissue are hindered and the 

measured diffusion coefficient appears reduced compared to free water and is 

hence referred to as apparent diffusion coefficient with the acronym ADC (Le Bihan 

et al. 2006; Le Bihan et al. 1986). DWI provides information about tissue structure 

and intra/extracellular space through ADC maps that can account for motion and 

partial volume effects11 in imaged voxels (Le Bihan et al. 1986). During the acute 

phase ischemia lesions appear hypointense (i.e. dark) on ADC maps due to the 

reduction in the displacement of water that leads to reduced signal attenuation. This 

is quite the opposite of DWI images where the lesion appears hyperintense (i.e. 

bright). The appearance of the lesion on ADC maps changes over time whilst the 

ischemic cascade is evolving (cytotoxic oedema, vasogenic oedema, tissue 

necrosis); during this period the ADC signal normalises and then becomes elevated 

                                                
11 Partial volume effect refers to the fact that within one imaged voxel (in this study the voxels are 2.4x2.4x2.4mm) 
might contain not only one single type of tissue but more than one (i.e. grey and white matter, white matter and 
CSF, different types of white matter etc). 



Part I. Introduction  Neuroimaging 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 146 

 

in the chronic stages of ischemia (Warach et al. 1995; Warach et al. 1996; Welch et 

al. 1995). 

In early studies of diffusion it was noted that the contrast in ADC maps was 

orientation-dependent (i.e. it varies depending on the direction of measurement) 

(Chenevert et al. 1990; Doran et al. 1990; Moseley et al. 1990). The directional 

dependency was shown to result from the diffusion anisotropy reflecting the intrinsic 

structural anisotropy of biological tissue (Basser et al. 1994). The anisotropy is 

mainly determined by the presence of intact and organised cell membranes that 

hinder water diffusion along a specific direction.  

These imaging contrasts (conventional and physiological) should be used in 

combination and applied to stroke patients to improve diagnosis (Schellinger et al. 

2010). For example, using DWI and FLAIR in combination reduces the partial 

volume effect of CSF whilst increasing the lesion contrast (Latour & Warach 2002; 

Lansberg et al. 2001). ‘As a rule of thumb, DWI hyperintensities without T2 or 

FLAIR changes implies reduced ADC and can be taken as evidence of acute 

ischemic injury’ p.463, (Mohr 2004). 

 

5.2 Image quality 

5.2.1 Signal-to-noise-ratio (SNR) 

The image quality depends on various factors, amongst which the signal to noise 

ration is rather crucial. Signal is here considered as meaningful changes in some 

quantity; whereas noise is considered as irrelevant sources of variability. Noise 

originates, amongst other sources, from different spatial and temporal sources, 

such as the inhomogeneity of the main magnetic field, thermal molecular motion 

within the human body, and the various relays within the measuring chain of the 

scanner (e.g., coil, magnet, and receiver). 

The ratio between the relevant and the irrelevant signal, called signal-to-noise ratio 

(SNR) determines the quality of the final image, i.e. the more noise, the less signal, 

the worse the image and vice versa. 

 

5.2.2 Imaging artefacts 

Various artefacts can affect MR images and either originate from the participant or 

the equipment. Two main types of artefacts can compromise image quality and are 

induced by the participant, namely bulk motion artefacts (i.e. head movements) and 
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physiological motion (i.e. cardiac pulsation). Whereas head movements can partially 

be corrected post-acquisition, pulsation artefacts cannot. To reduce the likelihood 

and amplitude of motion artefacts the participant has to be comfortable and the 

head should be padded appropriately during the acquisition. To decrease pulsation 

artefacts, sequences can be acquired gated to the cardiac cycle. Pulsation artefacts 

are mainly introduced by the systolic part of the cardiac cycle (Poncelet et al. 1992) 

and are most prominent in regions closely linked to the arterial and CSF system, for 

example, the periventricular regions. Diffusion measures will be explained later on 

in this chapter but it should be highlighted already that pulsation artefacts influence 

diffusion measures and various tensor indices: i) increase the apparent diffusivity 

(Turner et al. 1990) and ii) have detrimental effects on the trace (Pierpaoli et al. 

2003), fractional anisotropy, fibre orientation, and tractography results (Jones & 

Pierpaoli 2005). 

The second source of artefacts originates from the imaging equipment. For 

example, rapid alternation of strong gradient pulses induces so-called eddy currents 

in electrically conductive assemblies of the MRI scanner (Jones 2008; Le Bihan et 

al. 2006). These currents can originate in any conductive part of the scanner and 

are gradient amplitude and duration dependent. Eddy current-induced distortions 

can render the images contracted, dilated or overall shifted. In conventional 

contrasts these currents tend to self-cancel. Various pre-acquisition steps can be 

implemented to ameliorate interferences (i.e. self-shielded gradient coils etc.) but 

also in the processing stage correction methods are available. Eddy current 

distortions are slice-specific and can therefore be corrected on an individual basis; 

for example, by normalising the image to a reference such as the B0 scan or 

discarding spurious, single images from the data set. 

 

5.3 Advanced MR Imaging  

5.3.1 Diffusion tensor imaging (DTI) 

Simultaneously with Moseley’s (1990) report on the advantages of DWI in acute 

stroke imaging in cats, it was noted that the properties of water diffusion depend on 

the underlying anatomical structure (Chenevert et al. 1990; Doran et al. 1990; Le 

Bihan 1995). For example, in the ventricles water can freely move in all directions; if 

however, the water molecules are constrained within axons diffusion is facilitated 

parallel to the axonal direction and hindered perpendicular to it (Figure 32). This 

property is referred to as anisotropic (restricted motion) and isotropic (equal motion) 
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diffusion and forms the basis of diffusion tensor imaging tractography that allows 

visualisation of white matter connections in the living human brain. 

 

Figure 32 Concept of tissue-specific water diffusivity 

The upper panel depicts water movement in an unconstrained tissue environment (isotropic 
diffusion) and in restrictive tissue (anisotropic diffusion) (courtesy of Dr. Bizzi). The lower 
panel exemplifies this principle on a brain image where the water displacement is high in the 
ventricles and low in brain tissue (courtesy of Dr. Alexander). 

5.3.1.1 Diffusion tensor model 

As previously described the ADC is orientation-dependent in a way that the more 

structurally anisotropic the tissue will be, the more the ADC will be dependent on 

the measured direction (Kontis et al. 2009). Here, for the first time, diffusion tensor 

imaging provides a 3D model of water diffusion that can also describe anisotropy. 

Within the diffusion tensor model it is assumed that the displacement of water is 

unequal along measured directions. Whereas diffusion of free water can be 

described as spherical (due to the equal displacement in all directions) the diffusion 

tensor is often described as ellipsoid (due to the unequal displacement) (Figure 32 

and Figure 33). This ellipsoid is defined through six parameters. Three mutually 

orthogonal eigenvalues, commonly denoted by λ1-3, that define diffusivity along the 
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principal axes of the ellipsoid; whilst the orientation of the diffusion is defined by the 

eigenvectors, commonly denoted by ν1-3 (Figure 33). The orientation of the tensor is 

parallel to the principal eigenvector (ν1) and the principal eigenvector is in turn 

associated with the largest eigenvalue (λ). 

The tensor can be estimated from a series of DWI by linear regression (Basser & Le 

Bihan 1992) (Figure 33A). Given that the aforementioned six parameters (λ1-3, ν1-3) 

define the tensor a minimum number of six DWI’s and one non-DWI (b0) image are 

required to estimate the tensor; often in research studies more than 60 directions 

are applied. A detailed description of tensor estimation methods lies beyond the 

scope of this work and can be found in Jones (2009). 

 

Figure 33 Tensorial ellipsoid and its relation to isotropy/ anisotropy 

Dwi1 to dwi6 relates to a series of diffusion-weighted images (dwi) from which the tensor is 
estimated. ν1-3 denotes eigenvectors, λ1-3 denotes eigenvalues, x,y,z denotes laboratory 
reference frame (Courtesy of Dr. Dell’Acqua). 

5.3.1.2 Tensor-derived parameters 

5.3.1.2.1 Trace or Mean diffusivity (MD) 

The trace of the diffusion tensor is equal to the sum of the three eigenvalues 

(λ1+λ2+λ3). The averaged trace can be considered as mean diffusivity (MD; Figure 

34). In clinical studies (acquisitions with a b-value ≤ 1500smm-2) the MD was shown 

to be rather homogeneous throughout parenchyma (Jones 2009; Pierpaoli & Basser 
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1996). This reduces the distinctness of anatomical structures but does not confound 

the detection of diffusion abnormalities, such as an acute ischemic lesion (Lythgoe 

et al. 1997). MD is therefore a useful clinical surrogate measure of diffusion deficits.  

 

Figure 34 Average trace/ mean diffusivity  

Trace and mean diffusivity (MD) with corresponding tensor and mathematical equation 
(courtesy of Dr. Dell'Acqua) 

5.3.1.2.2 Diffusivity along ellipsoidal axes 

The diffusivity measured along the principal axis (λ1) is referred to as axial diffusivity 

(also called longitudinal or parallel diffusivity). The average of diffusivities along the 

two orthogonal axes (λ2, λ3) is denoted as radial diffusivity. The application of these 

measure is however still debated, as the direction and magnitude of the 

eigenvalue/eigenvector system relies on physical measures that are sensitive to 

noise, influenced by the estimated tensor ellipsoid and potentially by underlying 

pathologies (Wheeler-Kingshott & Cercignani 2009). 

 

5.3.1.2.3 Fractional Anisotropy (FA) 

Mathematically, the variance of all three eigenvectors (ν1-3) about their mean is 

normalised by the overall magnitude of the tensor (Jones 2009). The resulting FA 

index represents the fraction of the tensor that can be attributed to anisotropic 

diffusion. The normalised FA value designates free diffusivity (i.e. unhindered 

isotropic) with the value 0; and constrained diffusion (i.e. anisotropic along one axis 

only) with the value 1. 

On FA maps graded signal intensities represent these FA values, whereby grey 

matter and CSF (where diffusivity is relatively unrestricted, i.e. isotropic) appear 

dark, while white matter appears bright, and voxels with a high degree of parallel 
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structures, such as within the corpus callosum, appear the brightest (Jones 2008) 

(Figure 35).  

 

Figure 35 Fraction anisotropy (FA)  

FA map with corresponding tensor and equation (courtesy of Dr. Dell'Acqua) 

 

It has been noted above that it is possible to infer fibre orientation from DWI and 

ADC maps when the structures are predominantly aligned to the principle axes (x, 

y, z). These values are however dependent on the orientation. The direction of 

highest diffusivity, defined as the eigenvector associated with the largest 

eigenvalue, is on the other hand a robust measure for fibre orientation (Jones 

2009). Based on this, colour-coded FA maps were developed where the orientation 

of fibres along the three axes is represented by three colours (Pajevic & Pierpaoli 

1999). Within this scheme interhemispheric connections (i.e. commissures) are 

denoted in red, ipsilateral longitudinal connections (i.e. associations) are 

represented in green, and ascending/descending connections (i.e. projections) are 

shown in blue (Figure 36). These maps are thus sometimes referred to as red-

green-blue (RGB) maps. 
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Figure 36 Red-Green-Blue (RGB) colour-coded FA map  

RGB colour-coded FA map with corresponding tensor and equation (courtesy of Dr. 
Dell'Acqua) 

 

Table 10 Commonly used diffusion-derived measures. From (Ciccarelli et al. 
2008). 

 

 

5.3.2 Diffusion Tensor Imaging (DTI) Tractography 

Two classes of algorithms are available for tractography, namely deterministic and 

probabilistic. Deterministic tracking approaches of streamline propagation can be 

initiated at multiple starting points, usually at obligatory passages sometime referred 

to as ‘bottleneck’ passages. The tensor within each voxel is then estimated and the 

streamlines are pieced together voxel by voxel based on the principal direction 

within each voxel (Conturo et al. 1999; Mori & van Zijl 2002; Mori et al. 1999). 

Tracking is usually constrained by angle and fractional anisotropy thresholds (e.g., 

α=45°, FA ≥0.15); these parameters are set (often arbitrarily) to prevent streamlines 

turning back on themselves in successive tracking steps and to ensure that the 

principal eigenvector is well defined and the uncertainty in principal eigenvector is 

reduced (Jones 2008). Probabilistic tractography propagates various trajectories 

from a given starting point (or ‘seed point’) (Koch et al. 2002; Behrens, Woolrich, et 

al. 2003b), instead of a single trajectory as it uses deterministic tracking. This 
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Review

Diff usion-based tractography in neurological disorders: 
concepts, applications, and future developments
Olga Ciccarelli, Marco Catani, Heidi Johansen-Berg, Chris Clark, Alan Thompson

Diff usion-based tractography enables the graphical reconstruction of the white matter pathways in the brain and 
spinal cord of living humans. This technique has many potential clinical applications, including the investigation of 
stroke, multiple sclerosis, epilepsy, neurodegenerative diseases, and spinal cord disorders, and it enables hypotheses 
to be tested that could not previously be considered in living humans. This Review will outline the limitations of 
tractography, describe its current clinical applications in the most common neurological diseases, and highlight 
future opportunities. 

Introduction
Tractography is a technique to trace brain pathways in 
vivo with diff usion imaging data, and the number of 
researchers that have used tractography to study 
neurological disorders has increased in recent years. A 
basic understanding of the principles of tractography is 
essential to interpret the results of the published clinical 
studies correctly (table). Furthermore, an appreciation of 
the information tractography is able to provide clinicians 
with an expert insight into the limitations of the technique 
are prerequisites to move the clinical applications of 
tractography forward. In this Review, we give an overview 
of the current clinical applications of tractography, its 
technical limitations, and its future applications. First, 
we describe the methodology and limitations of 
tractography. Then, we review the published reports that 
have applied tractography to study the most common 
neurological diseases. Finally, we discuss the future 
developments of tractography and its promising 
applications.

Diff usion-based tractography
Diff usion-based tractography is a technique based on the 
directional movement of water, which is determined by 
the brain microstructure and imaged with diff usion-
sensitive MRI1–3 to generate virtual, three-dimensional 
representations of the white matter fi bre tracts (panel).4 –7 
The ability to trace white matter pathways in a non-
invasive way is the reason why tractography has generated 
such enthusiasm and high expectations.8 Established 
methods to visualise fi bre pathways and investigate brain 

connectivity, such as those used in tracer studies, follow 
the neuronal projections from the site of the tracer 
injection, but these techniques are invasive and restricted 
to non-human primates. Tractography techniques, 
however, follow the preferred direction of water given by 
the diff usion tensor9 in each image voxel (volumetric pixel) 
from a starting or “seed” region, which opens up the 
possibility for white matter organisation and connectivity 
studies in living human beings. Furthermore, the MRI 
method used to provide data for the tractography process 
can be readily obtained on standard MRI systems, with 
acquisition times that typically range from 3 to 20 minutes, 
depending on the image data quality required. The main 
assumption that underpins tractography is that the 
dominant direction of water motion—the principal axis of 
the diff usion tensor—aligns with the predominant 
orientation of the fi bres in an imaging voxel.1 

The diff usion tensor is a mathematical description of 
the magnitude and directionality (anisotropy) of the 
movement of water molecules in a three-dimensional 
space.10 In the brain white matter, diff usion is directional 
(anisotropic) along the fi bres because molecules move 
more easily parallel to tracts and are mostly hindered or 
restricted in their movement perpendicular to tracts. 
Therefore, the diff usion tensor gives two important 
pieces of information in each imaging voxel: the 
magnitude of diff usion anisotropy and the orientation of 
the maximum diff usion. Tractography algorithms use 
this information to track the whole white matter pathway 
by inferring the continuity of fi bre paths from voxel to 
voxel;4–6 that is, the direction of maximum diff usion in a 
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Explanation

Tract volume The volume of the tractography-derived tract (mm3 or cm3)

Fractional anisotropy (FA) A measure of the deviation from isotropy that shows the degree to which the diff usion tensor is “anisotropic”. High FA is found in 
the brain regions that contain white matter fi bres because the water molecules move more easily parallel to the fi bres

Mean diff usivity (MD) The mean molecular motion, independent of tissue directionality

Parallel diff usivity Diff usivity parallel to the axonal fi bres (axial diff usivity)

Radial diff usivity The diff usivity perpendicular to the axonal fi bres, which is calculated from the mean magnitude of diff usion along two 
perpendicular directions that are orthogonal to the overall maximum diff usion direction 

Voxel-based connectivity An index provided by the probabilistic tractography algorithms at each single voxel that indicates the probability of a connection 
to the starting point

Table: Diff usion-derived and tractography-derived measures commonly reported in clinical studies



Part I. Introduction  Neuroimaging 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 153 

 

results in a map visualising the probability that certain voxels are connected to the 

starting point (Kaden et al. 2007). Probabilistic tracking termination is also achieved 

through the restriction of angular deviation between successive propagation steps 

to avoid the tracts looping back onto themselves (Behrens, Johansen-Berg, et al. 

2003a; Behrens, Woolrich, et al. 2003b). 

The current study is based on the deterministic approach, which is discussed below. 

Based on the local and discrete estimation of the main fibre orientation within one 

voxel, it is possible to apply algorithms that can follow the direction across voxels 

and unite them if certain prerequisites are sufficiently obeyed (such as no abrupt 

curvatures or a drop in FA; Figure 37). ‘Originated in the late 1990s, the purpose of 

fibre tracking or ‘tractography’ is to infer the three-dimensional trajectory of 

anisotropic structures in tissue by piecing together discrete (voxel-based) estimates 

of the underlying continuous fibre orientation field’ p. 942, (Jones 2008). The 

underlying assumption is that the prevailing direction of diffusion (i.e. the 

eigenvector associated with the largest eigenvalue) within each voxel aligns with the 

principal fibre orientation (Basser et al. 1994). Based on this assumption the 

direction of maximal diffusion is propagated across adjacent voxels (Figure 37). 

Two subjective thresholds are used to constrain the tractography reconstruction of 

white matter pathways. If, for example, the angle would exceed a 45° angle the 

algorithm would stop the propagation at this voxel, as such a sharp curvature is 

assumed rather unlikely (angle threshold). A second threshold is defined based on 

FA values (0 isotropic, 1 anisotropic), the FA threshold will be usually set to 0.2, 

which limits the reconstruction to areas of high anisotropy. The propagation will 

terminate whenever FA values are reduced below the previously defined threshold. 

This FA reduction is likely to occur in regions of multi-fibre orientations and voxels of 

mixed tissues (i.e. grey and white matter boarder). The investigator decides upon 

these two thresholds during the preprocessing of the data and defines a step size 

for the propagation based on the resolution of the data. 
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Figure 37 Voxelwise propagation and stopping rules 

Voxelwise propagation underlying tractography and propagation stopping rules (i.e. FA and 
angular threshold) 

Using deterministic tracking software, virtual in vivo dissections of white matter 

pathways can be achieved, whereby one or multiple regions of interest (ROIs) are 

selected and streamlines passing through these regions are visualised. When 

multiple regions of interest are used (as is the case for most white matter pathways) 

streamlines are visualised that obey Boolean logic filtering; meaning that the use of 

multiple ROIs allows for the following combinations: i) streamlines passing 

simultaneously through ROI1 and ROI2 are visualised (A+B), ii) streamlines passing 

through ROI1 and not through ROI2 are visualised (A-B), or iii) streamlines passing 

through ROI1 and ROI2 but not ROI3 are visualised (A+B-C) (Conturo et al. 1999; 

Catani et al. 2002; Wakana et al. 2004; Mori & van Zijl 2002; Catani & Thiebaut de 

Schotten 2008) (Figure 38). 

It is important to emphasise at this point that the reconstructions are a visualisation 

of the water diffusivity direction and not axonal structures per se. 
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Figure 38 Boolean logic and Boolean logic filtering 

Panel A depicts schematically the concept of Boolean logic. Taken from (Catani et al. 2002). 
B Application of Boolean logic in the brain, exemplified with the ventral network pathways. C 
depicts all major white matter pathways in the human that can be dissected applying 
Boolean logic filtering from (Catani & ffytche 2005). 

5.3.3 Limitations of the tensor model 

The deterministic approach, as the name implies, is a more rigid and conservative 

approach to tractography than the probabilistic approach. Deterministic tracking 

only produces one tract that is the most likely reconstruction, whereas probabilistic 

tracing visualises all possible propagations starting from a ROI. Hence, 

deterministic tractography does not provide a margin of certainty, even though 

uncertainty is associated with each estimate of the principal eigenvector (ν1) (Jones 

2003). This is most relevant for areas of multi-fibre orientation, grey matter, and 

CSF (Jones 2003; Jones 2008; Mori & van Zijl 2002). Furthermore, because ε2 and 

ε3 are constrained to the plane orthogonal to λ1 and the principal eigenvector (ν1) is 

inferior fronto-occipital fasciculus

uncinate fasciculus

inferior longitudinal fasciculus

A B

C

PROJECTION 

COMMISSURAL 

ASSOCIATION 

Corona radiata Fornix 

Corpus callosum Anterior commissure 

Cingulum Inferior longitudinal 

Arcuate 

Uncinate Inferior fronto-occipital 



Part I. Introduction  Neuroimaging 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 156 

 

parallel to the fibre orientation the tensor model cannot provide information about 

the orientation of additional fibres within a voxel. This makes tractography based on 

the tensor model prone to artefactual reconstructions that are mainly due to the 

inability to separate crossing fibres, which in turn can generate false positives (i.e. 

non-existent tracts) and false negatives (i.e. absence of truly existing tracts) 

(Dell'Acqua & Catani 2012). Diffusion-derived measures, such as FA, are 

dependent on the SNR and become increasingly overestimated with lower SNR 

(Pierpaoli et al. 1996). FA, the main surrogate measure of tract integrity used in the 

literature, is however voxel-specific rather than tract-specific. FA reductions within a 

voxel can result from multi-fibre crossing, touching, or ‘kissing’ and from partial 

volume effects. This necessitates advanced algorithms or the consideration of novel 

diffusion models (Dell'Acqua & Catani 2012; Jones 2010). Multi-fibre orientation 

models, such as spherical deconvolution, can overcome some of these limitations 

(as discussed below).  

 

5.3.4 Spherical deconvolution (SD) 

Recently, the development of spherical deconvolution provided an algorithm that 

resolves multiple fibre orientations within voxels, where DTI classically choses the 

average direction of a voxel (Figure 39). This algorithm is based on the postulation 

that the signal obtained from different white matter structures can be translated into 

a three-dimensional signal profile (Dell'Acqua et al. 2012). The multipeak shape of 

the spherical function provides the number of distinct fibre orientations within a 

voxel, the fibre orientation, and weight of each fibre component. This method is 

therefore useful to resolve multifibre orientations in complex white matter regions 

that typically occur in complex organisms. 
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Figure 39 Simulation results from SD and DTI algorithms  

This figures demonstrates the reconstruction of two crossing fibres at different crossing 
angles (50°, 70°, and 90°) using spherical deconvolution (SD, here shown under fibre 
response) and Diffusion tensor imaging (DTI). Taken from (Dell'Acqua et al. 2012) 

In conclusion, magnetic resonance imaging enables the non-invasive in vivo study 

of neuronal tissue in both health and pathology. Various MRI techniques have been 

developed and/or improved in recent years (e.g., in terms of field strength and the 

use of rapid imaging techniques together with improved signal-to-noise ratios that 

can provide high contrast differentiation between tissue types). Also, recent 

advances in physiological contrast, such as diffusion and perfusion-weighted 

imaging, have paved the way to studying the living human brain. 

 

5.4 Stroke-specific neuroimaging 

CT scanning is the so-called ‘gold standard’ for acute stroke assessments due to its 

availability and the possibility to scan patients regardless of the presence of 

ferromagnetic devices or implants. Even though CT brain scans are still common as 

a primary imaging source to establish the presence of cerebral haemorrhage prior 

to thrombolysis treatments, the use of MRI for diagnostic purposes and 

management of acute stroke is rapidly growing. This is due to the proportion of 

negative CT scans during the early evaluation of ischemia, the superior sensitivity of 

MRI in the detection of lacunar strokes, and the ability to obtain various imaging 
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contrasts simultaneously. The disadvantages of MR imaging compared to CT 

scanning are: i) decreased availability, ii) higher costs, iii) longer scanning times, 

and iv) contraindications, which limit its utility in some patients (e.g. those patients 

with metallic implants, claustrophobia, and/or marked obesity cannot be scanned). 

The advantages on the other hand are: i) higher image resolution, ii) rapid detection 

of ischemic changes (in the order of minutes), and the iii) availability of multi-

contrast acquisitions (e.g., DWI and PWI) as previously discussed. 

As noted above (please see Chapter 4), the ischemic cascade results in the 

breakdown of the cellular membrane integrity. Within the core region of the infarct, 

the critically reduced blood flow leads to the failure of the Na+/K+ pump and a 

subsequent increased influx of sodium (anoxic depolarisation) that results in the 

loss of ion homeostasis and promotes intracellular water accumulation (cytotoxic 

oedema) (Srinivasan et al. 2006). Subsequently, the blood-brain-barrier becomes 

increasingly compromised and this results in an efflux of serum proteins and 

intravascular water from endothelial cells into the extracellular space –which in turn- 

lead to vasogenic oedema (Kahle et al. 2009). Intracellular water accumulation is 

therefore considered a surrogate marker of impending cell death. The swelling of 

the infarct is usually at its maximum within 3-5 days post stroke, and gradually 

subsides over the course of the following two weeks. The accumulation and 

confinement of water within the intracellular space results in restricted water 

diffusion. Diffusion-weighted imaging is highly sensitive to the diffusion of water 

molecules and can therefore detect intracellular accumulation of water within 

minutes. This diffusion slowing (i.e. cytotoxic oedema) results in a hyperintense 

signal (i.e. bright) on the DW image. Within the penumbral region, the blood flow 

restriction has not yet reached critical levels to sufficiently impede performance of 

the Na+/K+ pump. The diffusion-weighted signal of the penumbra is therefore usually 

normal. However, the penumbra can be estimated and visualised with perfusion-

weighted (PW) methods (e.g., ASL, PET, perfusion CT) and then it can be overlaid 

on the diffusion-based ADC maps. The mismatch between diffusion and perfusion 

imaging contrasts is seen as an MRI marker of the penumbra. However, only a 

handful of studies have investigated the relationship between penumbra and 

aphasia recovery (please see section 5.5 below for full details). In brief, acute stroke 

lesion volume (as measured with diffusion-weighted imaging) is associated with 

subsequent clinical stroke severity as assessed using the NIHSS (Lövblad et al. 

1997). Further, some have reported that clinical recovery can be predicted by 
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combining clinical factors (such as stroke severity and delay between symptom 

onset and treatment time), with diffusion-weighted parameters (Baird et al. 2001). 

 

5.4.1 Dynamic MRI signal changes in stroke (pseudonormalisation) 

Ischemic changes influence the signal contrasts (as described above). Given the 

dynamic nature of the ischemic cascade, the obtained image signals are variable 

over time (see Figure 40). On T2-weighted images the ischemic damage is best 

appreciated after 12-24 hours of symptoms onset, when the infarcted area becomes 

hyperintense. After a variable period - ranging from one to four weeks - the signal 

attenuation reduces. The DWI signal meanwhile increases in the hyper acute and 

acute stages with maximal signal changes within the first post-ictal week. The 

elevated DWI signal reduces after approximately three weeks. The ADC signal 

decreases immediately post-ictal with its nadir within 24 hours (Moseley et al. 1990; 

Pierpaoli et al. 1996; Pierpaoli & Basser 1996). This drop is related to the shift of 

extracellular to intracellular water accumulation (Warach et al. 1992; Moseley et al. 

1990; Siesjö 2008). Hereafter the signal stabilises for 3-5 days and then 

progressively increases to become elevated in the chronic stage (Albers 1998). This 

signal progression has also been related to the cascade of underlying 

histopathological changes (vasogenic edema, loss of cell membrane integrity, 

gliosis, cell death) (Welch et al. 1995). Due to the temporary coexistence of 

cytotoxic edema (decreased diffusion) and vasogenic edema (increased diffusion) 

the ADC signal will appear normal within 1-4 weeks after onset before the signal 

chronically elevates (Bodini & Ciccarelli 2009). This period is referred to as 

pseudonormalisation as the imaged tissue is damaged whilst being characterised 

by a normal appearing ADC. During this period the lesion appears hyperintense on 

DWI (owing to the T2 component on the DWI), isointense on ADC, and elevated on 

T2-weighted imaging (Copen et al. 2001). The progressive ADC signal elevation 

thereafter mirrors the accumulation of extracellular water, tissue cavitation, and 

gliosis. Further, not only total lesion size follows specific temporal path - sub 

compartments also do this. This implies that the lesion tissue is heterogeneous 

(Warach et al. 1997) and that different ADC intensities indicate different temporal 

stages of tissue evolution towards infarction (González et al. 1999). 

The time window of pseudonormalisation of the ADC signal can occur as early as 

two days post onset in patients treated with thrombolysis (Marks et al. 1999). The 

ADC progression is also related to patient age and lesion aetiology (Copen et al. 

2001). In this study by Copen et al., ADC transition in signal intensity seemed to 
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increase earlier in the older patients and in nonlacunar strokes. These results 

suggest the possibility that for younger and lacunar stroke patients the therapeutic 

window might increase.  

 

Figure 40 Pseudonormalisation of imaging signals 

Pseudonormalisation of imaging contrasts. T2-weighted imaging (T2WI) detects ischemic 
damage the earliest after 12-24 hours post onset, the signal then increases and stabilises 
again after a period of about 30 days. Diffusion-weighted imaging is highly sensitive to early 
changes in stroke and lesions can be appreciated as hyperintense signal alterations within 
minutes after onset. The signal intensity reduces over time. The apparent diffusion 
coefficient (ADC) drops within minutes of onset and reaches its nadir within 24 hours. 
Thereafter the signal increases. Modified from (Lansberg et al. 2001; Wu et al. 2011). 

 

Due to the time-locked progression of the ADC signal it is possible to estimate the 

infarct age. A similar effect can be seen on CT scans. Within two to three weeks 

post onset the so-called ‘fogging-effect’ occurs whereby the hypodense infarct 

gradually (but only temporarily) increases in density and sometimes becomes 

isodense before eventually becoming hypodense again (Becker et al. 1979; Chalela 

& Kasner 2000). Knowledge of these effects is pivotal for the aging of an infarct and 

for the correct interpretation of the imaging results. 
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5.5 Neuroimaging in aphasia 

Neuroimaging has helped the field of aphasia leap beyond the classical clinico-

anatomical observations (Catani, Dell'Acqua, Bizzi, et al. 2012a). Perfusion and 

diffusion weighted contrasts, as well as diffusion tensor tractography, have provided 

new insights into the anatomy and recovery from aphasia. However, especially for 

the realm of language, and in our case aphasia research, the best method has to be 

chosen for the purpose of investigation. Table 11 details the commonly used 

imaging methods in language research whilst highlighting their strengths and 

weaknesses. 

 

Table 11 Imaging methods utilised in language research including their 
advantages and disadvantages. From (Stemmer & Whitaker 2008) 
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 TABLE 6.1      Characteristics of Imaging Techniques in Language Research  

 Technique 
 Method and/or 

measures 
 Spatial/temporal 

resolution 
 Invasiveness/

discomfort to subject  Loudness  Availability  Monitary cost  Unique advantages 
 Unique 

disadvantages 

 EEG, ERP  Bioelectric activity (fl uctuating 
voltage changes detected at scalp) 

 Centimeters/
milliseconds

 Non-invasive/very little 
(more tolerant to movement 
than, e.g., fMRI) 

 None  High  Low  Good temporal resolution, 
ready availability, ease of 
recording

 Low spatial resolution 

 fMRI  Relative change in 
deoxyhemoglobin; blood-oxygen-
level-dependent (BOLD) effect 

 Millimeters/1–5 s  Non-invasive/moderate: 
strict movement restrictions, 
narrow quarters 

 Very high  Limited  High  Good spatial resolution  High magnetic fi eld; 
loud; low temporal 
resolution

 DTI  Application of specifi c 
radiofrequency and magnetic 
fi eld-gradient pulses to track the 
movement of water molecules in 
the brain 

 Millimetres/–  Non-invasive/moderate: 
strict movement restrictions, 
narrow quarters 

 High  Limited  High  Good spatial resolution  Loud; movement 
restrictions

 PET  Intravenously injected radioactive 
tracer; perfusion; glucose 
metabolism; oxygen utilization 

 Millimeters/about 
90 s 

 Invasive (radioactive 
tracer)/moderate: no head 
movement, narrow quarters 

 None  Very limited  Very high  Ability to measure 
brain metabolism + 
pharmacodynamics

 Poor temporal 
resolution; exposure 
to radioactivity; 
limited to short tasks 

 MEG/MSI  Biomagnetic activity 
(magnetic fi elds measured by 
superconductive detectors and 
amplifi ers at scalp) 

 Millimeters at 
cortex (less precise 
for deep sources)/
milliseconds

 Non-invasive/little: strict 
movement restriction 

 None  Extremely 
limited

 Very high  Excellent temporal and 
good cortical spatial 
resolution

 Detects only dipoles 
oriented tangentially 
to the skull but not 
radially

 rTMS  Application of rapidly changing 
magnetic fi elds to specifi c areas of 
the brain leading to excitation or 
inhibition of neuronal cells 

 Centimeters/–  Invasive (application 
of magnetic stimulus)/
moderate to high (possible 
headache)

 Low  Limited  Low  Ability to induce  “ virtual, 
temporary lesions ”  

 Possible headache; 
in very rare cases 
epileptic seizure 

 NIRS 
(optical
imaging)

 Changes in the brain ’ s 
oxygen absorption based 
on optical properties of 
hemoglobin; concentration 
of deoxyhemoglobin, 
oxyhemoglobin, total hemoglobin 

 Millimeters/
milliseconds

 Non-invasive/very little 
(more tolerant to movement 
than fMRI) 

 None  Limited  Low  Low costs combined 
with excellent temporal 
and very good spatial 
resolution; tolerant to 
movement 

 Limited depth 
penetration
(maximum of about 
5 cm) 

 ES (ESM)  Application of electrical current 
directly to the surface of the 
brain. Induces a local temporary 
 “ lesion ”  that disrupts normal 
function

 Millimeters/
milliseconds

 Very invasive: brain 
penetration

 None  Extremely 
limited

 High (surgery 
costs;
technique
itself low cost) 

  “ Gold standard ”  of spatial 
and temporal resolution 

 Brain bleeding, 
infection

  DTI: diffusion tensor imaging; EEG: electroencephalography; ERP: event-related potentials; ES: electrocortical stimulation; ESM: electrocortical stimulation mapping; fMRI: functional magnetic 
resonance imaging; MEG: magnetoencephalography; MSI: magnetic source imaging; NIRS: near-infrared spectroscopy (also referred to as optical imaging); PET: positron emission tomography; 
rTMS: repetitive transcranial magnetic stimulation.  
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Perfusion studies have indicated that lesion size is not the pivotal contributor but 

rather the extent of hypoperfusion (i.e. penumbra), which explained the fluctuations 

in language proficiencies in acute aphasia. The penumbral extent and its relation to 

aphasia was investigated in detail by Hillis et al. (2006) who demonstrated that post 

stroke naming deficits improved with reperfusion. In addition to the ‘classical areas’, 

this study emphasised the importance of reperfusion of the left midfusiform gyral 

region (BA37) that was consistently shown to be hypoperfused in patients with 

naming deficits. The relevance of reperfusion to post stroke language recovery were 

previously shown with MR-based imaging (Fridriksson et al. 2002) and PET imaging 

(Cappa et al. 1997). The extent of hypoperfusion was further identified as a better 

predictor of neurological severity post stroke than lesion size (Barber et al. 1998; 

Beaulieu et al. 1999; Chalela et al. 2000). Ochfeld et al. (2010) further showed that 

the time of assessment is relevant as hypoperfusion and infarction of BA44/45 is 

associated with Broca aphasia in the acute stages but less so in chronic stages. 

The author related this finding to connectional rearrangements and cognitive 

mechanisms to cope with the functional loss. 

In the first week following a stroke, however, the fluctuations in language abilities 

and between syndrome classifications as well as spontaneous recovery have been 

related to the restoration of blood flow to hypoperfused areas. For instance Hillis et 

al. (2002) examined the reperfusion of ten Brodmann areas (10, 18-20, 22, 37-40, 

44, 45) with both PWI and DWI. They found that reperfusion of area BA22, i.e. the 

classical Wernicke’s area, is most commonly associated regaining the capacity to 

understand spoken language. Also Croquelois et al. (2003) used perfusion CT and 

DWI and focussed on the three frontal gyri, the superior and middle temporal gyri, 

basal ganglia and inferior parietal lobe as well as the insular and external capsule 

region. The authors showed that if penumbral tissue within these regions evolves 

into infarction aphasia scores deteriorated whereas if penumbral tissue was 

reperfused the aphasia scores improved for repetition, spontaneous speech, and 

comprehension. These studies highlight the importance of early reperfusion of 

stroke damaged cortical areas for long term language recovery. 

Nonetheless, the relevance of subcortical structures and connections between 

language-relevant cortical areas were also thought to be likewise important. Only in 

recent years, the 19th century hypothesis of the connectional anatomy of language 

could be investigated using Diffusion tensor imaging (DTI) tractography. DTI allows 

non-invasive in vivo investigations of anatomical connections between identified 

language areas. The first acute aphasia group comparison study by Breier et al. 



Part I. Introduction  Neuroimaging 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 163 

 

(2008) investigated the three surrogate pathways of language (superior longitudinal 

fasciculus (SLF), arcuate fasciculus (AF) and uncinate fasciculus) in 20 patients 

assessed at least one month post stroke (mean 22 months±24 months, range 1–72 

months). The arcuate is considered a subcomponent of the SLF in this study and 

whenever the authors refer to it they mean the vertical segment (i.e. the connection 

between Geschwind’s and Wernicke’s territory). The authors reported reduced FA 

in the superior longitudinal and arcuate fasciculi. When correlated with the Western 

Aphasia Battery the SLF was associated with repetition deficits only, whereas the 

arcuate was associated with repetition and comprehension deficits. Repetition 

deficits were associated with the SLF and AF regardless of the damage to cortical 

areas; however, comprehension was not independent of cortical damage to the 

superior temporal gyrus. No correlations were found for the uncinate fasciculus. 

These findings are in line with the 19th century hypothesis that damage to the 

arcuate fasciculus will manifest in conduction aphasia, marked by intact expression 

and reception of language with poor repetition as the conduction between the 

receptive and the expressive areas is interrupted. 

Hosomi et al. (2009) retrospectively reported on 13 stroke patients assessed within 

two days of admission. The authors did not replicate FA differences between a 

control group, non-aphasic stroke patients and aphasic patients. In contrast, the 

authors found reduced volume of the left arcuate, which was the strongest predictor 

for the presence of aphasia at the time of discharge. Another study investigated the 

lesion load of the arcuate as predictor by using an atlas approach (Marchina et al. 

2011). Lesion maps of chronic aphasics (≥11 months post onset) were tested 

against atlas-based percentage overlay maps. The authors showed that the amount 

of damage to the arcuate fasciculus is a good predictor of articulation impairments 

(rate of speech, content). Lesion sizes as well as the ventral pathways were shown 

not to be predictive.  

In brief, these studies used various indices to identify the role of white matter 

pathways for language and/or language impairment after stroke. The consensus 

from these studies is that the arcuate fasciculus has been consistently shown to be 

relevant for intact language and likewise, damage to the arcuate was shown to be 

associated with language impairment. Further, no other pathway in the left 

hemisphere has yielded similar results (e.g., uncinate fasciculus).  

Whilst these studies agree on the importance of the arcuate fasciculus for language 

in stroke, methodological limitations within each study as well as differences 
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between these studies have to be considered.  These aspects shall be discussed 

later (see Chapter 12). 

 

In conclusion, neuroimaging is contributing to our understanding of post stroke 

neuronal changes and functional recovery. Structural and functional imaging (i.e. 

T1/T2/FLAIR and fMRI) have already corroborated a wealth of studies that 

generated informative but not yet conclusive evidence towards the recovery of 

aphasia. The newly developed physiological imaging (i.e. perfusion and diffusion 

weighted) has opened up the field for novel investigations and a fostered 

understanding of recovery. Only a handful of studies are yet available that 

implement these techniques in aphasiology. 
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CHAPTER 6 METHODS 

 ‘Truth in science can be defined as the working hypothesis best 
suited to open the way to the next better one.’ 

(Konrad Lorenz) 

 

This chapter provides a point of reference for the reader to the specific objectives of 

the study, a description of the patients studied and the materials and methodologies 

used as well as an introduction to the statistical rational. 

 

6.1 Aims 

The principle aim of this study was to use diffusion tensor imaging (DTI) 

tractography in hyperacute stroke patients to investigate the underlying a priori 

white matter anatomy. DTI allows examination of the arcuate fasciculus, connecting 

frontal and temporal language areas, as well as the degree of lateralisation of this 

tract. In stroke imaging however the left hemisphere measures are altered due to 

the ischemic changes and hence no laterality will be calculated here in relation to 

DTI measures. Moreover, the influence of the presence of the arcuate on the right 

hemisphere in relation to language task performances was primarily investigated in 

this study. This research was complemented by the study of perfusion changes in 

the acute and chronic stages with a non-invasive MR-based method, called arterial 

spin labelling. 

 

6.2 Objectives 

The specific objectives of this thesis will be divided into categories based on the 

methods used to investigate the question.  
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General hypotheses (H): 

H1: Classical anatomical and demographical factors (e.g., lesion factors and 
patient-specific factors) are independent predictors of baseline and longitudinal 
aphasia severity.  

Methods: A prediction includes the directionality between variables and hence a 
regression model is necessary to investigate this hypothesis. Classical predictors 
will be added as independent variables and aphasia severity at baseline and six 
months after symptom onset will be defined as dependent variables. This method 
allows teasing apart the individual contribution of these factors towards aphasia 
severity within the model. 

H2: Clinically, patients who received thrombolysis seem to recover their language 
functions better and within a shorter time interval compared to non-thrombolysed 
patients. Hence, the hypothesis is that thrombolysed patients recover better.  

Methods: Limited literature is available on thrombolysis and aphasia recovery 
trajectories. It has however been reported that aphasic patients are more likely to 
receive thrombolysis treatment (Engelter et al. 2006). The information if the 
treatment was administered will be obtained from the clinical notes and be coded 
binary (thrombolysis given vs. not given). An independent t-test will be performed to 
identify the mean differences between the two patient groups. Given that this is a 
preliminary study and this hypothesis emerged after the study commenced, the 
groups are not balanced and no a priori power calculations were conducted. 
However, given the high number of thrombolysed patients at King’s College 
Hospital it was of interest to investigate the influence of treatment within our sample. 
To this end, we will conduct a power analysis to identify the strength of our results 
or, if applicable, define the number of patients needed for future studies to 
investigate this question further.  

 

Lesion analysis hypotheses: 

H3: Damage to cortical language areas, including the left inferior frontal and 
superior temporal gyrus, has been shown to be critical for language deficits. We 
therefore expect the maximum lesion overlay in our group to encroach on these 
regions.  

Methods: Lesions will be delineated on each patient’s native structural scan (T1-
weighted) and will then be brought into a common reference space (MNI). From the 
normalised lesions binarised percentage lesion overlay maps will be calculated with 
an automated software package and manually in FSL.  

 

H4: Based on the literature, one can assume that lesion locations will predict 
behavioural impairments as follows: lesions to the inferior frontal gyrus will be 
associated with altered fluency, lesions to the posterior temporal gyrus will be 
associated with comprehension deficits. In addition we expect that lesions along the 
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arcuate fasciculus will be associated with repetition deficits and extended lesions 
will be associated with an overall reduction in the aphasia quotient, reflecting a 
global impairment. We therefore expect a lesion-symptom analysis to map the 
deficits accordingly. 

Methods: Two programmes are available to conduct lesion-symptom mapping, NPM 
within mricron (Rorden et al. 2007) and matlab-based VLSM (Bates et al. 2003). 
Both programmes follow a similar rationale but apply slightly different test statistics 
(for discussion see (Rorden et al. 2007; Medina et al. 2010). Inputs needed for 
either of these programmes are the lesion maps for each patient (obtained from the 
previous analysis) and the corresponding scores on the language assessment. The 
scaled composite section score for repetition and the subscore from the word 
fluency and word finding section will be employed in parallel with the global 
composite score of severity (Aphasia Quotient). In addition to this classical 
approach a new method will be implemented (recently described in (Thiebaut de 
Schotten, Tomaiuolo, et al. 2012b) whereby the lesion overlay maps are overlaid 
onto probability maps provided within a DTI atlas from healthy subjects (available 
from www.natbrainlab.com) to determine the degree of involvement of each 
segment of the arcuate fasciculus and other language-related tracts. These values 
will then be entered into a regression model to establish if the damage to a given 
tract is predictive of language deficits. 

 

Tractography-based hypotheses (DTI with a supplementary SD approach): 

H5: Given the presence of the lesion only on the left hemisphere we have different 
expectations for the ipsilateral and contralateral language regions. In the left 
hemisphere we intend to use tractography to quantify the damage to the language 
tracts by measuring tract-specific indices, whereas in the right hemisphere we 
expect tractography to show the intact anatomy of the three segments of the 
arcuate fasciculus. 

Methods: Diffusion data will be pre-processed to reduce possible motion and 
equipment-induced artefacts to then obtain scalar maps (e.g., fractional anisotropy 
map). Whole brain tractography will be performed and the arcuate fasciculus will be 
virtually dissected in alignment with previous publications. A three regions of 
interest approach will be employed to obtain all three segments. For each segment 
tract-specific indices will be extracted (e.g. volume occupied by the streamlines, FA, 
MD, etc.). These measurements will be used to test the following hypothesis.  

H6: Previous studies have implied that the lesion load to the arcuate fasciculus is 
predictive of language impairments (Marchina et al. 2011). We therefore expect to 
see a gradient of deficiency dependent on the degree of disconnection of the three 
segments.  

Methods: A recently introduced method, called trackwise hodological lesion-deficit 
analysis (Thiebaut de Schotten, Tomaiuolo, et al. 2012b) will be employed. This 
method utilises a probabilistic tractography atlas as background for the individual 
lesions of each patient. When a patient’s lesion overlapped on a voxel with a 
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probability above chance level (i.e. >50%) the tract is considered disconnected. The 
resulting values are then entered into a regression model with the aphasia quotient 
at baseline and follow-up as dependent variables.  

 

H7: The direct connection between the inferior frontal gyrus and the superior 
temporal gyrus has traditionally been associated with repetition deficits. However, 
until recently this hypothesis was not testable due to the lack of methods for 
performing white matter dissections in stroke patients. Tractography can be used to 
investigate this aspect. Building on previous clinical and anatomical studies we 
expect to observe that damage to the long segment of the arcuate fasciculus, i.e. 
the direct connection between the superior temporal and inferior frontal gyri, is 
associated with repetition deficits.  

Methods: Methodologically, the relation between repetition deficit and tractography 
indices will be investigated including the lesion load to the long segment of the 
arcuate fasciculus as possible predictor and the repetition scaled composite section 
scores of the WAB-R as dependent variable in a regression analysis. Whilst 
controlling for demographical variables, such as age and gender. This analysis will 
be run for the baseline and longitudinal repetition deficits. 

 

H8: Based on previous literature it was shown that 60% of people are strongly left 
lateralised for the arcuate fasciculus, whereas 40% demonstrate streamlines in the 
right hemisphere. Likewise, it has been reported that about 30-40% of stroke patient 
will recover their language functions post stroke (please see introduction to thesis 
for details). The hypothesis is that those two groups might overlap and that recovery 
might be facilitated by the presence of a right hemisphere arcuate fasciculus. We 
therefore expect to observe patients with a larger volume of long segment 
streamlines within the right hemisphere to reach higher scores on the WAB-R after 
six months compared to patients with smaller long segments in the right 
hemisphere.  

Methods: The main analysis will be a regression model including classical 
predictors and the volume of the arcuate fasciculus as predictors of aphasia severity 
at baseline and longitudinally. To isolate the contribution of the volume of the long 
segment, the regression model will take into account demographical patient data 
(age, sex) and lesion factors (i.e. lesion size) at the first level. The second level will 
introduce the arcuate volume. This method will allow us to disentangle the change 
in significance, if any, that the long segment is accountable for. Where both models 
are significant the goodness of fit will be established using the Aikake Information 
criterion (AIC). 

 

H9: During the course of the study we had the opportunity to re-scan some patients, 
which will allow for longitudinal comparison. Functional plasticity has been 
previously described in the literature alongside dynamic peak activation shifts post 
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stroke (Saur et al. 2006; Schaechter et al. 2006). Further, the literature has 
described Wallerian degeneration following stroke, which will lead to white matter 
degeneration. Anisotropy metrics, such as FA, are sensitive to Wallerian 
degeneration (Pierpaoli et al. 2001; Thomalla et al. 2004; Mukherjee 2005). A 
decrease in FA, which results from a decrease in the major eigenvalue and increase 
in the minor eigenvalues, can be detected within a fortnight of symptom onset 
(Thomalla et al., 2004). We therefore expect to see a reduction in FA within the 
three segments of the arcuate fasciculus at the second scanning time point 
compared to the acute scan.  

Methods: Anisotropy and structural metrics will be extracted for all patients from 
both scanning session and will be compared across time using a paired t-test where 
the data is Gaussian and a Wilcoxon signed-rank test where this assumption is 
violated.  

 

H10: This analysis is supplementary to the main aim of the study. There has been a 
growing body of literature that an extended language network is orchestrating 
various linguistic functions. According to the literature two pathways, besides the 
arcuate fasciculus, are especially relevant. These include the inferior fronto-occipital 
fasciculus (iFOF) as part of the “ventral stream” (Saur et al. 2008; Forkel et al. 
2012) that is mainly implicated in semantic functions (Duffau et al. 2002). The other 
pathway is the Frontal Aslant Tract (FAT) that has been implicated in motor 
planning and speech initiation (Catani et al. 2012).  

Methods: Given that both pathway systems (i.e., iFOF and FAT) are interwoven 
within dense fibre populations (i.e. the iFOF is merging with the uncinate anteriorly 
and the inferior longitudinal fasciculus posteriorly and the FAT is mingling with the 
three branches of the superior longitudinal fasciculus, the lateral projection of the 
corpus callosum and the cingulum) DTI is likely to provide only partial 
reconstructions of these pathways. Hence, a Spherical Deconvolution (SD) 
approach will be implemented for this part of the analysis. Given that SD is a non-
tensorial model that is not restricted by the fractional anisotropy measures tracking 
within the left hemisphere should produce anatomically consistent reconstructions. 
To this end, it is also possible to calculate laterality indices and aim to replicate what 
has been shown previously in the literature in healthy brains. As above the FA and 
volume of these tracts will be obtained and entered into a correlation analysis with 
a) the overall aphasia severity and specific section scores of the WAB-R. For 
example, the iFOF measures were correlated with semantic fluency measures.  

 

Perfusion-based hypotheses (pCASL approach): 

H11: Considering that ischemic stroke causes an occlusion and hence reduced 
blood flow to cortical areas, it can be assumed that hypoperfusion will lead to 
functional deficits. We therefore expect to observe left hemispheric perfusion 
deficits, which are predictive of the overall aphasia severity. 



Part II. Experimental Data  Methods 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 170 

 

Methods: Firstly, the native cerebral blood flow (CBF) maps and the structural T1-
wighted images will manually set to their image origin (coordinate [0, 0, 0]) situated 
on the anterior commissure. Secondly, images will be segmented and normalised 
(unified segmentation). Thirdly, the perfusion map and the grey matter map of each 
patient will be co-registered in SPM. Rigid-body registration transformation 
parameters will be estimated for moving the ASL into alignment with the smoothed 
GM image, and subsequently applied to the ASL image. The resultant perfusion 
image will be normalised to standard (MNI) space using the normalisation 
parameters obtained during the unified segmentation process. In order to remove 
extracerebral signal, the normalised perfusion images will be masked using the 
SPM image calculator (ImCalc) (80% probability of being brain). Perfusion values 
will be extracted from the final images as the global perfusion mean across each 
hemisphere. 

 

H12: Hilis et al., 2001 reported that hypoperfusion in critical language areas is 
predictive of language deficits. We therefore hypothesised that in our data 
hypoperfusion within language areas is also predictive of language impairments in a 
way that hypoperfusion within Broca’s area will affect fluency and hypoperfusion 
within Wernicke’s area will affect comprehension measurements.  

Methods: Pre-processing of perfusion maps is identical to the above. To obtain the 
perfusion within each cortical language region the Anatomy toolbox will be used 
with predefined probability maps of each region. These ROIs will be applied to each 
hemisphere in each patient and the mean perfusion within each region will be 
extracted using the FSL tool fslstats to extract the mean for nonzero voxels. These 
measures are then correlated with the scaled composite section scores of the WAB-
R. 

 

6.3 Participants 

Patients with left hemisphere stroke and language impairment were recruited from 

the hyper acute stroke unit (HASU) at King’s College Hospital, London between 

2009 and 2012. Patients were screened within three days of admission using the 

Western Aphasia Battery Bedside Screening (WAB-R). Inclusion criteria were: (1) 

right-handedness, (2) first ever infarct, (3) presence of aphasia, (4) no previous 

neurological or psychiatric history, (5) medically stable to tolerate ambulance 

transport, (6) no MRI contraindications and (7) native English speaker. Eligible 

patients underwent comprehensive language assessment within 10 days of 

symptom onset (mean 5±5 days) and MRI scanning within two weeks, except for 

two patients who were scanned at day 20 and 24 after admission12 (overall mean 

10±6 days). Six months after admission patients were re-invited for a language 

                                                
12 The medical status of these two patients excluded earlier assessments. 
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assessment (mean 200±55 days). One subject had to be excluded after full 

assessment and scan due to a later non-stroke diagnosis (acute disseminated 

encephalomyelitis). The patient was excluded from all analyses. None of the 

patients had died over the course of this study. Eighteen patients fulfilled the 

inclusion criteria and completed the baseline assessment (12 males; mean age 

63±39 years; age range 28-87 years). Two patients (subject 14 and 16) did not 

attend the follow-up assessment thus sixteen patients completed the follow-up 

assessment (10 males; mean age 60±17 years; age range 28-87 years) (please see 

Table 13 in Chapter 7). All patients or their next of kin gave written informed 

consent. The study was approved by the Wandsworth Research Ethical Committee 

(09/H0803/95) and the local research and development committee (KCH1700). 

 

6.4 Study design 

All patients were screened with the brief WAB-R bedside screening to assess 

suitability for this study. If deemed suitable, the complete WAB-R assessment was 

administered to the extent possible depending on the medical condition of the 

patient and the in-patient duration (hospital target is set at three days) together with 

an MRI scan at the earliest possibility. 

Patients were followed-up after six months post onset and reassessed with the full 

language test. Some patients kindly made themselves available for a one year scan 

and a repeated language screening (Figure 41). 
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Figure 41 Study design 

Western Aphasia Battery Revised (WAB-R) and received an MRI scan. 16 patients were 
reassessed for their language function after six months and 10 patients were rescanned and 
screened after one year. 

6.5 Recruitment status and study impediments 

Across London 131 HASU beds are available, allocated between eight London 

hospitals (London 2009). The numbers of HASUs and available beds fluctuated 

during the period of this study due to regular re-evaluations by the South London 

Cardiac and Stroke Network. For King’s College Hospital the number of beds varied 

between 12-19 over the recruitment period. The recruitment from a HASU poses 

several logistical obstacles, which will be briefly mentioned with an account of how 

they were accommodated within the study (Table 12). The outlay of the local 

facilities necessitated ambulance transport for patients between the HASU and the 

MRI scanning facility. This delicate logistical chain caused delay and in some 

instances cancellations of scanner slots. During the course of this study the 

National Health Service (NHS) hospital allocation system changed (with effect on 

the 19th July 2010). This resulted in a patient influx to the HASU and resulted in 

higher demands for repatriation. The evolution of recruitment is plotted against the 

expected recruitment and screening efforts (Figure 42). 
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Table 12 Recruitment complications and implemented solutions. 

Obstacle Resulting problem(s) Solution employed 

Porter HASU - 
transport lounge 

Delayed pick up of patients from the 
ward  

Porter booked in advance and pick up 
time was confirmed again 

Ambulance 
transport 

- Booking 72 hours prior to transport 
required 

- Allocation of 3 hours slots for pick 
ups (for a 9am scan the patient 
had to be ready at 6am)  

- Delayed arrival which resulted in 
the need to cancel some scanning 
slots 

- Patients were erroneously left at 
the KCL radiology department 
regardless written instructions to 
the Centre for Neuroimaging 
Sciences 

- Pick up time after the scan was 
often 3 hours, which could mean 
the patient was occupied for a total 
of 7 hours with no guidelines on 
fluid restrictions or a possibility to 
rest. 

- Transport restricted to workdays 
and office hours, i.e. between 
9am-4pm 

- Due to high transport demands the 
jobs were often delegated to 
subcontractors with no adequate 
clinical competency 

- Driving personnel ill trained to deal 
with patient’s needs or drive not 
adequately for wheelchair 
transports (e.g., aphasic patients 
got shouted at for not giving 
directions). 

I waited with the patients during the 3 
hours slot and accompanied every 
return transport to provide directions to 
drivers to ensure that the patient feels 
comfortable and arrives at the correct 
location.  

 

I filed two complaints to the transport 
services regarding the inappropriate 
driving style, inability to follow written 
directions and the driver’s rapport with 
the patients. All complaints were 
officially followed up but without further 
results. 

Scanner 
availability 

- Slots bookable according to 
transport availability, i.e. only 
workdays between 11-2pm 

- Need to obtain clinical notes to 
prove absence of ferromagnetic 
metal 

- Slots are usually booked/cancelled 
in advance which does not suit a 
hyper acute clinical study where it 
is not possible to plan patient 
availability 

Late cancellation slots were booked 
were possible and ‘slot 
sharing/swapping’ with another study 
was attempted. 

For the medical history the next of kin 
and GP were engaged and relevant 
notes were faxed directly to 
radiographers where possible. 

Patient mobility Patient mobility was often restricted 
due to the presence of post stroke 
hemiparesis without personnel trained 
on safe patient mobilisation. 

Future stroke studies should be 
equipped with a Rotastand for patients 
to independently move from the chair to 
the bed or have a dedicated trained 
person allocated to the project. 

Repatriation Patients are repatriated to their local 
hospitals within the target of three 
days. Unless ethical approval for the 
other hospitals were available the 
patient cannot be recruited back for 
further assessments (i.e. scanner 
slots were needed within three days) 

Ethical approval was extended to 
further sites that were most commonly 
repatriated to. Future studies should 
attempt a comprehensive south London 
study approval within the stroke 
network (approval of each hospital is 
needed separately currently). 

HASU, hyper acute stroke unit; KCL, King’s College London  
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Figure 42 Patient recruitment chart 
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6.6 Data acquisition 

6.6.1 Language assessment 

Language function was assessed with the Western Aphasia Battery Revised (WAB-

R) (Kertesz 2007). All patients were assessed with the WAB-R bedside screening 

(3.44±3.29 days, range 1-15 days), followed by a full examination with the 

comprehensive battery to the extent possible within the demands of a hyperacute 

ward (5.44±4.69 days, range 1-17 days). Assessments were regularly conducted in 

the presence of a speech and language therapist. At follow up (199.87±54.71 days, 

range 127- 229 days) patients were re-assessed with the same version of the 

battery. One year post stroke ten patients volunteered to be re-assessed with the 

WAB screening and re-scanned. 

 

6.6.2 Neuroimaging acquisition protocol 

6.6.2.1 Conventional structural imaging 

The scanning protocol included the following structural scans: T2-weigthed images 

(36 slices, TE = 83 ms, TR = 5000 ms, slice thickness = 3 mm, matrix = 

512x512x26, FOV = 24 cm, flip angle = 90 degrees), T2 Fluid Attenuate Inverse 

Recovery (T2-FLAIR) (36 slices, TE = 166 ms, TR = 10 sec, slice thickness = 5 mm, 

matrix = 320x320, FOV = 24 cm, flip angle = 90 degrees), and SPGR T1-weighted 

images (>100 slices, TE = 2.8 ms, TR = 7 ms, slice thickness = 1 mm, matrix = 

256x256x196, FOV = 28 cm, flip angle = 20 degrees). These scans were 

subsequently used as reference images for classical lesion analysis or for co-

registration purposes as described below. 

 

6.6.2.2 Diffusion-weighted imaging (DWI) 

Diffusion data was acquired using a High Angular Resolution Diffusion Imaging 

(HARDI) protocol optimised for subjects with high risk of movement during the scan. 

The total amount of acquired DWI data was twice that of the standard protocol to 

allow sufficient data to accommodate the presence of severe motion (standard: 32 

directions + 4 b0 scans, this protocol: 60 directions + 7 b0). The 60 DW directions 

were then further randomly reordered as described in Cook et al. (2007) to 

distribute motion artefacts uniformly across the whole spherical sampling.  

MRI-DWI data sets were acquired using single shot echo-planar imaging (EPI) on a 

3T GE scanner (General Electric, Milwaukee, US) with a standard 8-channel head 

coil for signal reception. The acquisition was cardiac gated to avoid acquisition 
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along the systolic phase and hence reduce pulsation artefacts (Jones & Pierpaoli 

2005). Diffusion-weighted axial slices were obtained using the following parameters:  

Data was acquired with the following parameters: voxel size 2.4 x 2.4 x 2.4 mm, 

matrix = 128 x 128, field of view = 307 x 307 mm, 60 slices, 1 average, TE = 93.4 

ms, b-value = 1500 s/mm2, 60 diffusion-weighted directions and 7 non-diffusion-

weighted volumes, using a spin-echo single-shot echo-planar imaging (EPI) 

sequence with an ASSET factor of 2. Peripheral gating was applied with an effective 

TR of 20/30 R-R interval. 

This acquisition rendered the data compatible with different analyses such as 

standard diffusion tensor tractography (DTI) and Spherical Deconvolution 

tractography techniques (Dell'Acqua et al. 2010; Dell'Acqua et al. 2012).  

After the first two data acquisitions it became apparent that acute stroke patients 

cannot tolerate the original DTI sequence of approximately 17 minutes. To make the 

scan more tolerable for the patients and to reduce subject movements the DTI 

sequence was split in two shorter scans of 33 directions (29 DWI + 4 b0) and 34 

directions (31 DWI+ 3 b0).  Here, the timings for the peripheral gating were fine 

tuned for the specific protocol thus reducing the total scan time to approximately 

8.15 minutes and 8.32 minutes for each scan (detailed scanning time dependent on 

heart rates can be found in Appendix A. Cardiac Gating Protocol). Since the 

implementation of the split sequence, no major motion artefacts were detected upon 

visual inspection of the data in the FMRIB Software Library package (FSL, 

http://www.fmrib.ox.ac.uk/fsl/). 

 

6.6.2.3 Arterial spin labelling (ASL) 

To assess regional tissue perfusion, pseudo-continuous arterial spin labelling 

(pCASL) was acquired as described in Handley et al. (2013).  

Image acquisition 

A previously optimised perfusion acquisition (Howard et al., 2012) was employed for 

the current study with the following details: rCBF measurements were made using a 

pulsed-continuous arterial spin labelling technique (pCASL, Dai et al., 2008). 

Arterial blood was labelled using a train of Hanning radio frequency (RF) pulses of 

500µs duration, with an inter-‐‑pulse gap of 1500µs and a total labelling duration of 

1.5 seconds. A train of gradient pulses of similar duration and repetition rate (each 

followed by a refocusing lobe) accompanied the RF train to achieve flow-‐‑driven 
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adiabatic inversion. The maximum gradient amplitude under the Hanning pulses 

and the average gradient intensity over the RF train duration were 9mT/m and 

1mT/m, respectively. These values satisfy the adiabatic condition for inversion and 

place the first aliased labelling plane away from the excitation bandwidth of the 

Hanning pulse (Dai et al., 2008). In the control phase, the sign of alternate Hanning 

pulses was reversed, and the amplitudes of the gradient pulses were adjusted so 

that the magnetization transfer effects of the pulse are compensated whilst 

achieving no net inversion of arterial spins. 

After a post-labelling delay of 1.5s, the image was acquired with a 3D Fast Spin 

Echo (FSE) spiral multi-‐‑slice readout. This delay has been found to be appropriate 

to minimize vascular artefacts (Howard et al. 2011). To minimise blurring, the spiral 

acquisition was very short (4ms), and the required resolution was achieved with 8 

spiral interleaves (TE 32ms/TR = 5500ms; ETL = 64). Images were acquired at a 

48x64x60 matrix on an 18x24x18cm field of view and reconstructed to a 2562 in 

plane matrix, resulting in a nominal spatial resolution of 1x1x3mm. Three pairs of 

tagged-‐‑untagged images were collected. Selective saturation of the image slab was 

applied at 4.3s before acquisition; selective inversion was applied 3s before 

acquisition with further non-selective inversions at 1.5s, 764ms, 334ms and 84ms 

before imaging. This repeated inversion achieved successful suppression of the 

background static tissue signal, thus maximizing the sensitivity to blood perfusion. 

Following the three arterial spin labelling (ASL) control-‐‑label pair averages, images 

were acquired with the same imaging sequence but with inversion recovery 

preparation instead of ASL. One sequence with saturation of 4.3s and then an 

inversion at 1650ms before imaging was used to create a fluid suppressed image. A 

second sequence with saturation at 4.3s and then inversion at both 2408ms and 

511ms was also acquired to create a fluid and white matter suppressed image. For 

both these sequences, the receiver gain was automatically lowered by 21 dB 

relative to the ASL sequence to avoid receiver saturation. These images were used 

to help quantify blood flow from the ASL as described below. 

 

Flow Quantification 

For quantification of flow, the sensitivity of the image was calibrated to water at 

each voxel (Alsop and Detre, 1996; Buxton et al. 1998; Williams et al. 1992). By 

means of a neighbourhood maximum algorithm to avoid regions with partial volume 
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of suppressed fluid, a low-‐‑resolution sensitivity map was created. This map was 

calibrated for water sensitivity by assuming the tissue was predominantly white 

matter with a water concentration of 0.735gm/ml (Herscovitch and Raichle, 1985) 

and a T1 of 900ms, and using the equations for inversion recovery signal 

attenuation. This calibration produced a sensitivity map (C) equal to the fully relaxed 

MRI signal intensity produced by one gm of water per ml of brain. With this co-

registered sensitivity map (C), CBF was calculated at each voxel using the equation 

specified in Howard et al. 2012. 

The whole ASL pulse sequence, including the acquisition of calibration images, was 

performed in 6:08 minutes. 

 

6.7 Data pre-processing 

A detailed pre-processing protocol, including the used terminal commands, is 

available as Appendix D. A conglomerate of software packages was employed for 

data processing analyses, including standard neuroimaging software, such as 

Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm/), FMRIB 

Software Library package (FSL, http://www.fmrib.ox.ac.uk/fsl/), MRICROn 

(http://www.mccauslandcenter.sc.edu/mricro/mricron/), ExploreDTI 

(http://www.exploredti.com/), and in-house softwares matlab-based StarTrack 

(www.natbrainlab.com).  

 

6.7.1 DTI pre-processing 

6.7.1.1 Concatenation 

Since the new split diffusion sequence has been introduced no major motion related 

artefacts have been recorded after visual inspection of the data. This procedure 

however necessitated an additional initial pre-processing step to combine 

(concatenate) both acquisitions. After converting the scanner-native DICOM files 

into NIFTI files (dcm2nii from mricron) both acquisitions as well as the 

corresponding b-value (*.bval) and b-vectors (*.bvec) were available. These files 

were then combined using a matlab-based script to obtain a single NIFTI file, 

containing all 60 diffusion-weighted directions and seven non-diffusion-weighted 

images. 
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6.7.1.2 Artefact correction 

To reduce the presence of motion artefacts during the acquisition the patients were 

bedded as comfortably as possible with extra padding between the coil and the 

head to avoid involuntary movement. Additionally, during the post-processing long-

term motion artefacts were corrected with ExploreDTI motion artefact correction and 

the additional gradient table rotation (www.exploredti.org). Equipment-induced 

artefacts (i.e. eddy currents) were corrected with ExploreDTI through iterative affine 

correction to the non diffusion-weighted scan. For each patient the data quality was 

visually inspected. Patients with more than two corrupted volumes on the scan slice 

would have been excluded. 

 

6.7.1.3 Diffusion tensor tractography  

Whole brain tractography was performed by selecting as seed voxels all brain 

voxels with fractional anisotropy (FA) >0.2. Streamlines were propagated with a 

step-size of 1mm, using Euler integration and b-spline interpolation of the diffusion 

tensor field (Basser et al. 2000). Where FA<0.2 or when the angle between two 

consecutive tractography steps was larger than 45° tractography was stopped. 

Using a matlab-based script the data was then exported to TrackVis 

(www.trackvis.org) for virtual dissections and volume measurements of white matter 

pathways according to Catani et al. (2008). 

 

6.7.1.4 Spherical deconvolution tractography  

Spherical deconvolution was chosen to estimate multiple orientations in voxels 

containing different populations of crossing fibres. The input data was the acute and 

chronic diffusion weighted scans as matlab converted files (.mat) and already 

corrected for motion and eddy current distortions. A modified (damped) version of 

the Richardson-Lucy algorithm for spherical deconvolution (Dell'Acqua et al. 2010) 

was employed using the Software StarTrack (http://www.natbrainlab.com). 

Algorithm parameters were chosen as described in (Dell'Acqua et al. 2012). A fixed 

fibre response corresponding to a shape factor of α = 1.5 × 10–3 mm2/s was chosen 

(Dell'Acqua et al. 2013), the number of iterations of the deconvolution algorithm was 

400, the damping parameter for the damped Richardson Lucy SD algorithm 

regularisation (n) was 0.06 (the higher the value the lower the risk of false positive 

reconstructions) Propagation step size was 0.5, angle threshold was set to 45°.  
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Fibre orientation estimates were obtained by selecting the orientation corresponding 

to the peaks (local maxima) of the fibre orientation distribution (FOD) profiles. To 

exclude spurious local maxima, we applied an absolute and a relative threshold. A 

first “absolute” threshold was used to exclude small local maxima due to noise or 

isotropic tissue. This threshold is 3 times the amplitude of a spherical FOD obtained 

from a gray matter isotropic voxel. A second “relative” threshold of 8% of the 

maximum amplitude of the FOD was applied to remove the remaining local maxima 

with values greater than the absolute threshold (Dell'Acqua et al. 2010). Visual data 

quality check was done according to the guidelines and an interim result is shown in 

Figure 43. 

In order to automate some steps of the tractography dissection, regions of interest 

(ROIs) based on previous reports (Catani et al. 2007; Thiebaut de Schotten et al. 

2008; Thiebaut de Schotten, Dell'Acqua, et al. 2011a; Thiebaut de Schotten, 

ffytche, et al. 2011b) were defined on the MNI152 template provided within FSL. 

For each participants Convergence Maps from Richardson-Lucy Spherical 

Deconvolution Algorithm were registered to MNI152 template provided within the 

FMRIB Software Library package (FSL, http://www.fmrib.ox.ac.uk/fsl/) using 

Advanced Normalisation Tools (http://www.picsl.upenn.edu/ANTS/), which combine 

affine with diffeomorphic deformations (Avants et al. 2008; Klein et al. 2009). The 

inverse deformation was then applied to the ROI defined in the MNI152 in order to 

bring them to the native space of every participant. Individual dissections of the 

tracts were then visually inspected and corrected. 
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Figure 43 StarTrack© reconstruction of multifibre orientation  

StarTrack© reconstruction of multifibre orientation in the white matter of the dorsal superior 
and middle frontal gyrus. The highlighted area visualises pathways approaching the 
convexity. In this fibre-dense white matter area close to the cortex one can appreciate the 
crossing of the callosum (red), the corona radiata (blue-purple) and the superior longitudinal 
fasciculus (green). Own data shown. 

 

6.7.2 Arterial spin labelling (ASL) pre-processing  

ASL data acquisition was attempted in all 19 patients, however, at baseline four 

patient data sets (subjects 02, 06, 11, 12) were acquired without ASL due to time 

restrictions during the scanning session. One patient (subject 01) needed to be 

excluded from further analysis due to the presence of substantial movement 

artefacts. This leaves a total of 14 datasets to be analysed at baseline. 

Longitudinally, 10 patients returned after 12 months of symptom onset and ASL 

sequences were acquired, with one acquisition being not suitable for further 

analysis due to the endogenous tag still being accumulated in the artery (Figure 

44). Hence baseline data of 14 patients and follow-up data of nine patients was 

available for analysis. 
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Figure 44 Cerebral Blood Flow (CBF) map for subject 06’s one year scan 

The tag still remains in the bilateral branches of the middle cerebral artery (MCA). Due to the 
tag still being in the artery at the time of imaging this subject had to be excluded from further 
perfusion analysis. 

Firstly, the native cerebral blood flow (CBF) maps and the structural T1-weighted 

images were manually reoriented using SPM so that the image origin (coordinate [0, 

0, 0]) was situated on the anterior commissure.  

Secondly, the Clinical Toolbox (http://www.mccauslandcenter.sc.edu/CRNL/clinical-

toolbox) was employed to segment and normalise (i.e. unified segmentation) the 

structural images. The advantage of this toolbox is that it is specifically developed 

for clinical scans and can handle lesioned data well.  

Thirdly, the perfusion map and the grey matter map of each patient were co-

registered in SPM. This process involved smoothing (6mm kernel) the segmented 

gray matter (GM) image, from segmentation, to create a target for registration, 

which more closely resembled the distribution of signal within the perfusion image. 

Rigid-body registration parameters were estimated for moving the ASL into 

alignment with the smoothed GM image, and subsequently applied to the ASL 

image. The resultant perfusion image was then normalised to standard (MNI) space 

using the normalisation parameters obtained during the unified segmentation 

process. In order to remove extracerebral signal, the normalised perfusion images 

were masked using the SPM image calculator (ImCalc) (80% probability of being 

brain). The final masked perfusion map was smoothed with a kernel of 8 mm. In an 

attempt to be very conservative and only include grey matter whilst excluding white 

matter, the final images were re-masked to only include grey matter (minimum 30% 
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probability of being grey). Previous studies (e.g., Howard et al., 2012) used a 

masking of 20%, which was still overly inclusive for our cohort.  

Fourthly, given the nature of unilateral lesions in our cohort the individual 

contribution of each hemisphere to the perfusion values should be evaluated and 

hence the masks were dichotomised into left and right hemispheres; this was 

achieved by splitting the MNI template (MNI152_T1) at the hemispheric midline 

using fslmaths and binarising both resulting masks in fsl. These binarised masks 

were applied to the grey matter thresholded perfusion maps and the global 

perfusion values for each hemisphere in each patient were extracted using fslstats.  

Finally, the same method was applied to extract the perfusion within each region of 

interest. Anatomical ROIs in MNI-template space were derived from the Juelich 

probabilistic histological atlas. Based on a priori information regarding brain regions 

related to language, ROIs were created for pars opercularis (Broca_44), pars 

triangularis (Broca_45) (Amunts et al. 1999; Amunts et al. 2004), inferior parietal 

lobe (IPL_PF, IPL_PFcm, IPL_PFm, IPL_PGa) (Caspers et al. 2008; Caspers et al. 

2006), and the posterior superior temporal gyrus [STG_Te10, STG_Te11, 

STG_Te3]. The mean of the 20% voxels with greatest CBF values was computed 

(Mitsis et al. 2008) as a summary measure. ROIs were extracted from each 

individual CBF map acquired for each participant at each session (i.e., baseline and 

one year post stroke); these data were used to examine temporal variation in 

regional CBF response between the sessions. In addition, group comparison 

analyses were conducted based on the extracted ROIs for each hemisphere at 

each session (Howard et al. 2011) (see script in appendix). 

 

6.8 Un-anticipated acquisition differences and their resolutions 

Three participants (01, 02, 14) had more complex pre-processing requirements due 

to unanticipated dissimilarities in the acquisitions, which could be resolved as 

described below. 

 

6.8.1.1 Un-split sequences (subject 01 and 02) 

The diffusion datasets for subject 01 and 02 were acquired with the initial DTI 

sequence (full set of 60 directions acquired in on sequence). Only after these first 

two patients were acquired the need and possibility to split the DTI sequence into 

two parts to considerably reduce motion artefacts was discussed and subsequently 

implemented (details described above in 6.7.1). Due to the concatenation step the 
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results from all patients are a single NIFTI file including the 60 directions and 7 non-

diffusion weighted images. 

6.8.1.2 Acquisition with wrong gradient table (subject 14) 

The first 30 directions of the DW scan for subject 14 was acquired with the correct 

gradient table but the second scan was acquired with the gradient table for the first 

scan as well, which rendered 30 directions unusable (Figure 45, upper and middle 

left panel). The data set was reprocessed and corrupted directions were rejected 

(Figure 45, bottom panel). 

 

 

Figure 45 Subject 14 (left) in comparison with non-corrupted data set (right) 

The upper panel shows the outlier profile for subject 14 and a comparison data set. It can be 
appreciated that the profile of subject 14 has an increased error rate due to a wrong gradient 
table applied during the acquisition. The percentage of outliers within the diffusion-weighted 
image usually centres around 5% and the level of noise within the acquisition is equally 
spread across the acquisition. The outlier profile comparison between a successful scan and 
the corrupted acquisition of subject 14 clearly shows that i) the level of noise increases 
significantly between the two scanning sets and ii) the percentage of outliers vastly exceeds 
the 5% mark with peaks as high as approximately 19%. The left middle panel shows the 

DTIstroke14: wrong gradient table for second scan Normal wholebrain tractography reconstruction
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resulting whole brain tractography reconstructions before correction. The lower panel shows 
the corrected results for subject 14 after corrupted directions were discarded. 

6.9 Data processing 

6.9.1 Lesion analysis 

For each patient the structural scan were examined and anatomical landmarks were 

identified (Nieuwenhuys et al. 2008; Naidich et al. 2001; Türe et al. 1999). Once the 

anatomy was acknowledged the lesion location was defined for every patient and a 

list summarising the locations is provided in the results (Table 17 in Chapter 7). An 

example is given below of how structures and lesions were identified (Figure 46).  

 

Figure 46 Exemplified lesion identification on structural scans (here patients 04, 05) 

This method was applied to all patients in this study. Anterior ascending ramus [AA}, anterior 
horizontal ramus [AH], posterior horizontal ramus [PHR], posterior ascending ramus [PA], 
posterior descending ramus [PD], central sulcus [CS], anterior short insular gyrus [asg], 
middle short insular gyrus [msg], anterior long insular gyrus [alg], posterior long insular gyrus 
[plg], caudate nucleus [cn], thalamus [th], internal capsule [ic], external capsule [ec], 
subcentral gyrus [scg], superior temporal gyrus [T1], middle temporal gyrus [T2], inferior 
temporal gyrus [T3], fusiform gyrus [fg], parahippocampal gyrus [phig], pes hippocampi [ph], 
triangularis [tr], opercularis [op], supramarginal gyrus [SMG], genu corpus callosum [gcc], 
putamen [p], globus pallidus [gp]. 

For the group level analyses one of 18 patients had to be excluded, as no T1-

weighted scan was acquired leaving a total cohort of 17 patients for the acute and 

left sagittal axial (radiological view) coronal (radiological view)

left sagittal axial (radiological view) coronal (radiological view)Patient 04

Patient 05

postcentral gyrus/ dorsal parietal lobe lesion
insular lesion engulfing msg to plg, extreme/external capsules, claustrum and subcentral gyrus
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STG, inferior frontal gyrus cortical lesion
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15 patients (two failed to complete the follow-up assessment) for analyses at the 

chronic point. 

In a first step, native coronal T1-weighted images were re-sliced axially and co-

registered to the corresponding T2-weighted image (coreg) and thence skull 

stripped with the bet function in FSL. Stripped axial T1-weighted images were then 

normalised to a common reference space (Montreal Neurological Institute, MNI). 

The lesions were manually delineated on the axially re-sliced native T1-weighted 

images in FSL. The transformation matrix obtained in the previous normalisation 

step was applied to the lesion volume to normalise the lesion volume to the MNI 

space.  

In a next step, lesion overlay percentage maps were obtained by binarising (i.e. 

given a value of 0 or 1 to each voxel) the normalised lesion volumes and overlaying 

them in the MNI space.  
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Figure 47 Lesion analysis cascade – initial steps 

Step 1 provides the lesion of all patients plotted onto an MNI template. Step 2 provides a 
simple lesion overlay percentage maps (own data). The data shown is taken from left 
hemispheric stroke patients with the lesions being shown either in radiological or 
neurological view depending on the programme used for visualisation. 
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6.9.2 Advanced lesion analysis 

6.9.2.1 Voxelwise ‘topological’ lesion-deficit analysis 

To identify voxels within the brain that have a significant effect on behaviours a 

voxel-base lesion-symptom mapping approach was implemented (Bates et al. 2003; 

Rorden, Karnath, et al. 2007b). This will allow identifying those cortical regions 

between all patients that indicate that the presence of a lesion to these specific 

regions has little (cold colours) or considerable (warm colours) effects on the 

language performance (such as the overall severity and repetition impairments). 

This advanced lesion analysis was performed as linear regression analysis with the 

non-parametric mapping programme (NPM) and a voxel lesion-symptom mapping 

tool (VLSM) implemented in mricron, a method less sensitive to outlier profiles 

compared to other software packages (Rorden, Bonilha, et al. 2007a). The 

normalised lesions defined on T1-weighted images were converted into volumes of 

interest (*.voi) using the conversion tool in mricron and a binary map was created. 

The a priori minimum lesion density threshold was set to 10%, which means that 

statistics will only be computed for voxels that are damage in more than 10% (most 

commonly within our sample size this is equal to two patients) of the patients. 

Statistically, the continuous deficit analysis was performed that is based on the 

Brunner Munzel test. This rank order test requires at least 10 observations in each 

group whilst its power is assumed to be stronger than a t-test where the 

assumptions for parametric test are violated (as is often the case in behavioural 

observations) (Rorden, Karnath, et al. 2007b; Brunner et al. 2002). The multiple 

comparison problem implicit in the standard voxel-by-voxel hypothesis testing 

framework was accounted for with permutation testing within the voxel-based 

lesion-symptom mapping approach (Nichols et al. 2002). Permutation tests can be 

used to control for multiple comparisons in neuroimaging studies and are 

significance tests based on resamples drawn at random from the original data. 

Methods, such as VLSM, allow for permutation testing, at some computational 

expense, to determine a critical cluster size threshold (p < .005), based on 

commonly 1000 random permutations of the data (Kimberg 2007). 

 

6.9.2.2 Trackwise ‘hodological’ lesion-deficit analysis 

A recently published DTI atlas (Thiebaut de Schotten, ffytche, et al. 2011b) was 

used to describe the pattern of disconnection induced by each lesion at the 

individual level. This MNI-based atlas provides a colour-coded probability for each 

voxel belonging to a specific tract whereby blue represents a threshold of p<0.05, 
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green is set to 50% of people having a tract in this voxel, yellow represents 75%, 

and red indicates that a voxel belongs to this tract in 90% of the population. When a 

patient’s lesion overlapped on a voxel with a probability above chance level (i.e 

>50%) the tract was considered disconnected (Figure 48Error! Reference source 

not found.). Values were assigned to each colour: blue=1, green=2, yellow=3, 

red=4. Hence, only lesion load above 2 (i.e. above chance) were considered as 

disconnected. 

Statistical Package for the Social Sciences (SPSS Inc, Chicago, Ill) was used to 

compute regressions in order to identify the tracts whose lesion had a predictive 

value, after excluding confounding factors such as the lesion size. A first logistic 

regression used five independent variables: lesion volume (continuous measure), 

age (continuous measure), gender (categorical), and the disconnection of each 

segment (long segment, anterior segment, posterior segment). The regression 

aimed at identifying whether these four variables were able to predict the recovery 

of language function post stroke. All track-wise hodological lesion-deficit results 

were subjected to Bonferroni correction for multiple comparisons. 

  



Part II. Experimental Data  Methods 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 190 

 

 

Figure 48 Trackwise hodological lesion-deficit approach 

The native T1-weightes image is transformed from the native space into the MNI 

space and an MNI-based atlas is used as an overlay on the normalised image of 

the patient (own data shown). MNI normalised white matter atlas available from 

www.natbrainlab.com 
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6.10 DTI Analyses 

6.10.1 Inter-rater variability 

To ensure internal reliability two anatomists used TrackVis (www.trackvis.org) for 

virtual dissections and volume measurements of the three segments of the right 

arcuate fasciculus.  

 

6.10.2 DTI tractography reconstructions 

The arcuate fasciculus is connecting the temporal, parietal and frontal lobes via the 

dorsal route. The temporo-frontal direct connections as well as the two indirect 

connections between the angular gyrus and the frontal and temporal lobe were 

dissected using TrackVis. The ventral network connecting the occipital, temporal 

and frontal lobes is comprised of i) the uncinate fasciculus, connecting the anterior 

temporal lobe to the ventrolateral frontal lobe, ii) the inferior longitudinal fasciculus 

connecting the occipital and temporal lobes, and iii) the inferior fronto-occipital 

fasciculus, a long-range connection between the occipital and frontal lobe. 

Additionally, the recently described frontal aslant tract was dissected that is 

interconnecting Broca’s area with the supplementary motor area (Catani, 

Dell'Acqua, Vergani, et al. 2012b).  

The acquired dataset was compatible with tensorial and non-tensorial tractography 

methods, the latter that can partially resolve fibre crossing, such as spherical 

deconvolution (SD; see 6.6.2.2). The dataset was therefore additionally analysed for 

SD tractography, which allows for the visualisation of the fronto-parietal network 

(superior longitudinal fasciculi I-III). For each of these pathways the volume was 

extracted by means of number of streamlines as well as voxel count, radial and 

axial diffusivity, fractional anisotropy (FA) and mean diffusivity (MD). These 

surrogate measures were exported and analysed in IBM SPSS 20 (http://www-

01.ibm.com) and R (www.R-project.org). 

 

Arcuate fasciculus 

The arcuate fasciculus was dissected using a three region of interest approach. The 

restrictive cortical approach according to Catani et al. (2005) was employed with 

sagittal cortical ROIs placed within the frontal, parietal and temporal lobes (Figure 

49). The arcuate fasciculus is the candidate pathway for language-relevant 

functions. 
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Figure 49 Region of Interests (ROIs) for the three segments of the arcuate 
fasciculus 

Three ROI are placed on the lateral convexity of the left and right hemisphere. By combining 
the adequate ROIs the long direct segment, anterior and posterior segment of the arcuate 
fasciculus can be reconstructed. 

Ventral network: inferior fronto-occipital fasciculus (iFOF) 

The ventral network was delineated using the approach and the regions of interest 

detailed in (Forkel et al. 2012). Two ROIs, delineated on coronal planes, were used 

to dissect the fronto-occipital connections (Figure 50). An occipital region was 

placed on the white matter of occipital lobe posterior to the parieto-occipital sulcus 

and the temporo-occipital notch. One anterior ROI was defined on the white matter 

of the frontal lobes and delineated on the white matter of the external/extreme 

capsule. All streamlines between occipital and ventral frontal ROIs were labelled as 

iFOF. 
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Figure 50 ROIs for the inferior fronto-occipital fasciculus 

Adopted from the supplementary material in (Forkel et al. 2012) 

 

Frontal aslant tract (FAT) 

The frontal aslant tract was dissected with one ROI in the inferior frontal gyrus and 

the second ROI around the supplementary motor area as described in Catani et al. 

(Catani, Dell'Acqua, Vergani, et al. 2012b) (Figure 51). The FAT was implicated as 

candidate pathway for the initiation of articulation and motor components of 

articulation. 
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Figure 51 ROI for the frontal aslant tract (FAT) 

A sphere is placed in the supplementary and pre-supplementary motor area and a second 
sphere is placed in Broca’s area. On the sagittal plane the impression might arise that the 
ROI was placed on the caudate nucleus. This was not the case but in order to visualise both 
ROIs at the same time in this plane, the visualisation of the overlay brain had to be sliced at 
this specific point (as can be appreciated when comparing to the coronal slice on the right). 

6.10.3 Right hemispheric volume 

Given that the left hemisphere was affected by the stroke a reconstruction of 

pathways cannot be entirely trusted on methodological grounds and additionally the 

degree of damage varies within the left hemisphere. It is therefore not advisable to 

calculate a laterality index (LI) as the commonly used equation relies on the volume 

of the left and right hemispheric arcuate fasciculus alike (Seghier 2008): 

LI = right  hemisphere arcuate −  left hemisphere arcuate
right  hemisphere arcuate + left hemisphere arcuate

 

Instead, I embraced another approach whereby the volume of the right hemisphere 

is extracted (explained below) and the volume of the arcuate fasciculus is 

normalised to the hemisphere volume. This approach controls for the simple fact 

that a bigger hemisphere might have a bigger arcuate fasciculus. 

The computation was done in FSL (Smith et al. 2004) through linear registration of 

the native T1 image (1mm) onto the FSL T1 template (1mm). Prior to the 

registration, the native T1 image was first skull stripped (bet) with the fractional 

intensity default threshold of 0.5.  

In a second step an inclusive brain mask of the right hemisphere was hand drawn in 

mricron (Figure 52). fslmaths was then employed to mask the normalised skull 

right frontal aslant tractleft frontal aslant tract
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stripped T1 images and fslstats allowed to extract the volumetric measurements of 

each right hemisphere.  

To investigate the relationship of the right hemispheric volume and the long 

segment of the arcuate fasciculus (LS) in the right hemisphere, a correlation 

analysis was conducted. 

 

Figure 52 Process of extracting right hemispheric volumes 

Native T1 images (first image) were co-registered and skull stripped with the FSL T1 MNI 
template and normalised to the standard space (second image). A right hemispheric brain 
mask was then applied (third image) and the hemispheric volume was extracted (own data 
shown). 

6.11 Tract-Based Spatial Statistics (TBSS) 

Tract-Based Spatial Statistics employs non-linear registration and generates a 

whole brain white matter skeleton (S. M. Smith et al. 2004; S. M. Smith et al. 2006; 

S. M. Smith et al. 2007). TBSS has some advantages over voxel-based 

morphometry methods (VBM) and tractography. In comparison to VBM, TBSS 

overcomes the alignment problems. Also it is an automated method that can be 

used to investigate the whole brain (rather than individual tracts as with 

tractography). No detailed a priori neuroanatomical knowledge is required (S. M. 

Smith et al. 2009). TBSS relies on a group mean fractional anisotropy (FA) map that 

is skeletonised to represent the centres of all fibre pathways, which are common to 

all subjects within the studied cohort (Figure 53A).  

The previously described DTI pre-processing provides FA maps for each patient. 

These maps were extracted using MATLAB-based ExploreDTI (export to nii 

function). Individual FA maps where then aligned to a common target using non-

FSL MNI T1 template right hemispheric brain maskskull stripped T1 image normalised stripped T1 image
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linear registration (FNIRT) and an average FA map was created (Figure 53B). The 

mean FA map was then skeletonised through “thinning” (Figure 53C).  In a next 

step the individual normalised FA map is projected onto the skeleton to account for 

residual misalignment from the first step. A FA skeleton map is then available for 

each subject. Subsequent voxelwise statistics are applied across subjects on the 

skeleton-space FA data. Each step is clearly explained in the FSL tutorial on TBSS 

(http://www.fmrib.ox.ac.uk/fslcourse/lectures/practicals/fdt/index.htm#tbss). 

 

Figure 53 TBSS analysis cascade 

A Cohort FA maps are first normalised to MNI and averaged to create a mean white matter 
skeleton of the group. The individual normalised FA maps are then projected onto the 
skeleton and the individual white matter skeleton can be extracted (courtesy of Dr. 
Dell’Acqua). B Averaged fractional anisotropy (FA) map with anatomical landmarks (own 
data). C Skeletonised white matter map (own data). 
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Two TBSS analyses were conducted. In both cases, FA maps were pre-processed 

as described above and then submitted to a general linear model (GLM) analysis. 

The data was statistically analysed in FSL using randomise 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise). This permutation method is used for 

thresholding statistical maps where the null distribution is not known (hence non-

parametric testing). This modelling and interference can be achieved by using a 

standard general linear model (GLM) design setup (Nichols & Holmes 2002). 

Methodological rational behind the GLM analysis is available here: 

http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/feat5/glm.html. This is the recommended approach 

by the TBSS manual and the used terminal commands including explanations can 

be found in Appendix D. UNIX commands  

The first model was a single-group average with additional covariate analysis (for 

methodological details please see the manual: 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Single-

Group_Average_with_Additional_Covariate). Subjects were attributed to a group 

(the acute FA maps) and additional demographic and behavioural measurements 

(i.e. language recovery, age, sex, thrombolysis and lesion size) were available. 

These measures were treated as covariates and were defined as explanatory 

variables (EVs) in the model. Values are always entered ‘demeaned’ into the 

analysis; this means the value of interest is subtracted from the group mean. 

The aim of this analysis was to test for the regression of FA changes (in- or 

decrease) and language recovery at six months. 

The second model accounted for FA changes between the baseline scans the 

second scan one year later. The difference between those two FA maps was 

calculated and the resulting subtraction map was analysed with regards to the 

predictive value for language recovery. 

The aim was to test whether longitudinal FA changes might reflect behavioural 

changes (as in improved language functions). Nine data sets were entered into the 

analysis. 

Here, the chronic FA maps were registered onto the acute FA maps of each subject 

to reduce the effect of different head orientations during acquisition and have both 

images in the same reference space. This was achieved with FSL flirt with the acute 

image being the reference (see Appendix D. UNIX commands). The registered 

chronic FA map was then subtracted from the acute FA map using FSLmaths 

(Figure 54). 
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Figure 54 Advanced TBSS comparison between acute and chronic imaging 

The chronic fractional anisotropy (FA) map is registered to the corresponding acute FA map 
(same patient, different time points of scanning). The resulting registered chronic map is 
then subtracted from the acute FA map, generating a FA difference map. Colour coding 
‘spectrum’ was chosen to highlight changes in FA (increase= red, decrease= blue). Positive 
values (red) indicate FA increases, neutral values (green) indicate no FA changes, and 
negative values (blue) indicate FA decrease. Own data shown. 

The resulting maps were averaged. In a next step the acute and chronic FA maps 

were summed up and divided by two to create the group average FA image of 

which the skeleton was created. The skeleton was then applied to the subtraction 

maps (Figure 55). A skeleton of the subtraction maps is not obtainable as these 

maps only depict the difference between the two time points of scanning and 

therefore do not contain a full skeleton. Hence the group average FA maps were 

used and the skeleton was then re-applied to the subtraction maps. 

The data was submitted to a classical TBSS analysis using a study specific 

template and an FA threshold of 0.2. 

chronic FA map registered chronic FA map
acute FA map

registration to 
acute FA map of 
the same subject

-0.2

0

0.2

subtraction of the 
registered 

chronic FA map 
from the acute 

map

Individual Subject Subtraction Map

sagittal coronal axial
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Figure 55 Group TBSS analysis for chronic vs. acute subtraction FA maps 

The left panel shows individual FA map subtraction maps. The middle panel shows the 
group average FA subtraction map. A FA skeleton was obtained from the group FA maps 
(acute+chronic/2) and then applied to the subtraction maps providing the skeletonised FA 
map of subtraction. Positive values (red) indicate FA increases, neutral values (green) 
indicate no FA changes, and negative values (blue) indicate FA decrease. Own data shown. 

To setup the design the following parameters were defined. The input was set to 9, 

as nine data sets were available for acute and chronic comparisons. Five EVs were 

defined as, EV1: age, EV2: sex, EV3: lesion size, EV4: thrombolysis, and EV5: 

aphasia quotient difference between chronic and acute testing.  

The contrast of interest was defined as positive or negative regressions between 

behavioural performance (i.e. difference in language score chronic vs. acute) and 

longitudinal FA changes (see Figure 56, C1 and C2). This means that where FA 
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increases the aphasia score increases (positive) and where the FA decreases the 

aphasia score decreases (negative). 

 

Figure 56 General Linear Model (GLM) for language recovery (C-A) 

The left side represents the number of inputs (i.e. patient data sets), which were nine in this 
study. The bottom panel shows the contrast vectors for positive (C1) and negative (C2) 
interaction with the recovery variable ‘C-A’ (chronic aphasia quotient–acute aphasia 
quotient). 

6.12 ASL region of interest analyses 

Regional cerebral blood flow differences were investigated in a priori language 

areas sensu strictu in the left and homologous areas in the right hemisphere, 

including Broca’s are (BA44/45), Wernicke’s area (BA22), and the inferior parietal 

lobe. This analysis was conducted in SPM8 using the Anatomy toolbox to obtain a 

priori defined regions of interest in the normalised space. Mean values of cerebral 

blood flow in cortical target areas were extracted using fslmaths (see Appendix D. 

UNIX commands). 

 

6.13 Statistical analysis 

Statistical analyses were partially conducted in IBM SPSS 20 

(www.ibm.com/software/analytics/spss/) and some advanced analysis was 

calculated using the open source software R (http://www.r-project.org/). In the 

results chapter below the use of R will be clearly stated, otherwise conventional 

SPSS analysis was conducted. Data was tested for normal distribution and where 

ever normal distribution could be assumed parametric tests were applied, whereas 

in cases where it could not be assumed non-parametric tests were used.  

Relationships of categorical variables were analysed with chi2 test and for 

continuous variables with Pearson’s correlation.  
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Relative importance of potential predictors of aphasia recovery were analysed with 

multiple linear regression and logistic regression analyses.  

It will be highlighted in the results if corrected or uncorrected values are shown. 

When it is indicated that Bonferroni corrected values are displayed for multiple 

comparisons the correction was based on the following rational.  

If, for example, three indicators of behaviour are given (i.e. language is assessed as 

auditory comprehension, spontaneous speech, and repetition) and three indicator of 

anatomy are given (i.e. the three segments of the arcuate), 3x3=9 correlations can 

be calculated. The general null hypothesis (H0, no difference/association) can 

therefore be rejected nine times. Testing the null hypothesis over multiple 

comparisons has hence a bigger chance of rejecting the null hypothesis as if only 

one test of significance was applied (accumulation of α/Type I error). Assuming that 

the multiple comparisons entail m comparisons (in this example it would be 9) each 

test would be calculated with the corrected α error level α’, where α’= α/m. In order 

to reject the null hypothesis a test of significance needs to reach the corrected level 

of α’=0.05/9=0.0055 (Bortz 2005). 

The neuroimaging data was, unless stated otherwise or in circumstances were it is 

commonly not applied (e.g., DTI), subjected to multiple comparison corrections. 

Multiple comparisons correction is pivotal as the probability of making a Type I error 

increases when performing multiple statistical tests. This can be a significant 

concern especially for voxel-based studies, which typically involve testing across a 

multitude of voxels. The standard approach in fMRI is controlling for the family-wise 

error rate (FWER), or the probability of making one or more Type I errors amongst 

all tests. Achieving this control normally entails accepting an increased risk of Type 

II error. However, Bonferroni correction, the commonly used procedure for FWER 

control, is conservative for dependent comparisons (i.e. acceptance of higher Type 

II error). Lesion data, such as was used in the current stroke study, is liable to be a 

particularly affected by Bonferroni correction because of the inherent spatial 

coherence of lesion maps. Lesions tend to present in contiguous voxels whereby 

the condition of one voxel is strongly predicted by that of its adjacent voxels (i.e. 

voxels are not independent given that if one voxel is lesioned the neighbouring 

voxel has a chance of being lesion as well). Commonly used alternatives for this 

stringent approach (especially in fMRI studies) are the Gaussian Random field 

theory, False Discovery Rate (FDR), and permutation testing. Amongst these 

methods FDR and permutation testing have been advocated for lesion analyses 

(Rorden et al, 2007; Medina et al, 2010; Kimberg 2007; Rorden et al, 2004). False 
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discovery rate, as the name implies, provides a method for adjusting the expected 

proportion of false positives among voxels. FDR is more lenient than the Bonferroni 

method, which comes with greater power and increased rates of Type I error.  

Decisions on statistical test were determined based on the rational shown in Figure 

57. Statistical results are reported in compliance with the conventional thresholds 

for the probability values reflecting the strength of evidence against the null 

hypothesis (H0): p=0.05 for significant results, p=0.01 for very significant results, 

and p=0.001 for highly significant results. 



Part II. Experimental Data  Methods 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 203 

 

 

Figure 57 Statistical decision diagram 

Depending on the data at hand one test is more reasonable than the other, i.e. if a variable 
has identified outliers the mean will be biased towards them and the use of the median 
might be more applicable. A pivotal step in descriptive statistics is the test for normality, 
which will influence the subsequent interferential statistics. The lower panel shows the 
decision pathways for test of similarity and differences based on design (independent vs. 
dependent groups), number of groups (≥2), and level of measurement (continuous, 
dichotomised or ranks). Post-hoc tests are not considered here though they were applied in 
the analyssi. Adopted from (Kuehberger 2006). 
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CHAPTER 7 BASELINE ASSESSMENTS 

‘Medical statistics are like a bikini: what they reveal is suggestive, 
but what they conceal is vital.’ 

(Prof. Aaron Levenstein in his farewell lecture, 1981) 

 

For easier reading, the results were separated in three chapters according to each 

assessment. Hence, the first subchapter addresses the results from the baseline 

assessment; the second subchapter is dedicated to the follow-up results at six 

months, and the third subchapter details the results after one year. A chapter with 

supplementary analysis and a chapter with case reports of selected patients of 

interest complement these main chapters. 

To avoid confusion, the study design should be briefly mentioned again at this point. 

The baseline assessment included a screening, full language assessment and a 

MRI scan. The follow-up assessment, conducted six months after admission to the 

stroke unit, only involved a repeat of the language assessment. After one year from 

symptom onset, some patients were re-scanned and administered a repeated 

language screening. 

The current subchapter is dedicated to the investigation of our initial baseline 

measures and their potential correlation with aphasia severity and specific language 

subscales. 

 

7.1 Patients  

18 first-ever left-hemispheric stroke patients with complete baseline assessment (12 

males; mean age 63.39 years±18.44 years; age range 28-87 years) were included 

in this study (Table 13 for individual demographics). 

 

7.2 Demographics, language, lesion, and clinical factors  

Demographical data. A correlation analysis showed that age and sex are not 

significantly associated with initial aphasia severity (age: r=.65, p=.797; sex: r=.045, 

p=.858; please see Table 13 for raw data).  
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Possible gender differences were analysed with an independent t-test analysis. No 

gender differences were established for aphasia severity (t(16)= –.087, p=.93). The 

two categorical variables sex and fluency were also not significantly related 

(Fischer’s exact p=1.0). 
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Table 13 Demographic patient data 
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Table 14 WAB-R scaled composite section scores and raw scores stratified by 
gender.  

 BASELINE 

 ♀  ♂  

 n Mean (SD) n Mean (SD) 

Total AQ score (0-100) 6 42.19(13.50) 12 43.42(7.41) 

     

AQ scaled composite section scores     

Spontaneous speech (0-20) 6 8.33 (3.07) 10 7.20(1.50) 

Comprehension (0-10) 6 6.03(.94) 10 5.50(.915) 

Repetition (0-10) 6 4.30(1.25) 10 3.73(1.25) 

Naming (0-10) 6 4.02(1.39) 10 2.56(.92) 

     

Raw scores     

Information content (0-10) 6 4.83(1.38) 10 3.90(1.02) 

Fluency (0-10) 6 3.17(1.72) 10 3.10(0.90) 

Comprehension (0-60) 6 39.00(5.90) 10 42.30(5.74) 

Auditory recognition (0-60) 6 38.33(6.14) 9 40.11(5.74) 

Sequential commands (0-80) 6 43.33(11.37) 9 37.11(8.51) 

Repetition (0-100) 6 42.00(12.48) 10 37.30(12.51) 

Naming (0-100) 6 28.00(9.13) 10 16.80(6.84) 

Semantic fluency (0-20) 6 2.33(1.31) 9 1.22(0.60) 

Phonemic fluency (extra) 5 0.60(0.60) 7 2.43(1.38) 

Sentence completion (0-10) 6 5.17(2.04) 9 4.56(1.22) 

Responsive speech (0-10) 6 4.33(1.96) 9 4.00(1.24) 

 

Language factors. At baseline, 12 patients were classified with non-fluent aphasia 

(i.e. Broca-type) and six patients were classified with fluent aphasia (i.e. Wernicke-

type). Independent t-test analysis revealed that the non-fluent aphasia group was 

associated with a lower (i.e. more severe) baseline severity than fluent aphasias 

(AQnon-fluent=32.08±21.85, AQfluent=64.85± 25.23; t(16)= 2.85, p=.011). The was no age 

difference between non-fluent (60.33±17.953 years) and fluent (69.50±20.206 

years) groups (t(16)= –.994, p=.335). 

The overall aphasia severity (AQ) was significantly correlated with all subscales of 

the WAB-R except for comprehension (Table 15), which is to be expected given 

that these measures constitute the overall aphasia quotient (see introduction). 
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Table 15 Correlation between baseline WAB-R raw scores and the total AQ at 
baseline. 

WAB-R raw scores Baseline AQ 

Content r=.830** 

Grammar r=.684** 

Comprehension r=.381, ns 

Auditory word recognition r=.645** 

Sequential commands r=.531* 

Repetition r=.861** 

Naming r=.763** 

Fluency (semantic) r=.851** 

Fluency (phonemic) r=.745** 

Sentence completion r=.882** 

Responsive speech r=.927** 

** Correlation is significant at 0.01 level (2-tailed) 
*  Correlation is significant at 0.05 level (2-tailed) 
ns, Correlation is not significant 
AQ, Aphasia Quotient 

 
 

The individual subscales of the WAB-R were entered into a regression analysis to 

investigate whether their influence on the baseline severity is independently 

predictive. The linear multiple regression model defined the baseline aphasia 

severity as dependent variable and included four continuous baseline variables: the 

WAB-R scaled composite section scores for spontaneous speech, naming, 

comprehension, repetition, and semantic fluency. The baseline model was 

significant (F(4,11)=130.179, p<.000) and revealed repetition (β=.324, t(4.696), 

p<.001), spontaneous speech (β=.410, t(5.024), p<.000) and naming (β=.273, 

t(3.060), p<.011) as predictors for the initial severity. 

 

Taxonomical classification changes were also recorded as is shown in Figure 69. It 

is apparent that in the time between the bedside screening and the full baseline 

assessment many patients regained some of their language capacities, which is for 

example represented by a marked by the transition from severe to milder forms of 

aphasia. For example, patients classified as anomic increased between the time of 

screening (5.56%) and baseline (22.22%); likewise the number of patients with 

Broca’s aphasia decreased (screening 50%, baseline 33.33%). 

Six months after symptom onset most patients were classified as anomic (68.75%), 

and three patients (18.75%) made a full recovery in terms of their language 
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functions (i.e. AQ≥93.8). The remaining 12.5% included one conduction aphasia 

patient and one transcortical motor aphasia patient. 

 

Aphasia severity, gender and mean age of each taxonomical group is detailed 

below in Table 16. Only one patient each was classified as Wernicke or conduction 

aphasia. 

 

Table 16 Baseline taxonomy stratified by of aphasia severity (AQ), gender 
breakdown and age. 

  AQ  Male Age  

 n (%) mean SD %  mean SD 

Global 4 (22.2) 13.85 7.379 50 69.75 15.945 

Broca 7 (38.9) 35.12 19.673 71.4 55.57 14.223 

Transcortical motor 2 (11.1) 56 15.556 100 50 31.113 

Wernicke 1 (5.6) 15.4 . 100 75 . 

Conduction 1 (5.6) 60.83 . 100 85 . 

Anomia 3 (16.7) 78.5 2.271 33.3 76 14.177 

Total 18 (100) 40.27 26.162 66.7 64.22 17.758 

 

Lesion factors. A Kolmogorov–Smirnov test for normality showed that lesion size is 

not normally distributed in our sample (D(18)=.297, p<.000), hence non-parametric 

tests were used to further investigate the influence of lesion size. A Spearman 

correlation between lesion size and the initial severity was highly significant (r= –

.637, p<.004). This negative correlation implies that bigger lesions are associated 

with a lower AQ score, which means more severe language impairments. Lesion 

size was not markedly different between sexes (U=44.00, p=.494). 

 

Clinical factors. The surrogate measure of clinical severity was the NIHSS, a 15-

item neurologic examination ranging from 0-30, whose scores were normally 

distributed within this sample (D(17)=.140, p=.20). The NIHSS scores in our sample 

were obtained on admission (i.e. not simultaneously with the language 

assessments) and ranged from 1-27 with a mean score of 12.38±8.11. Stroke 

severity was not significantly different between sexes (NIHSS♀ 10.33±9.4, NIHSS♂ 

14.55±7.75; t(15)=-.995, p=.336). Stroke severity was not correlated with the initial 
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language severity (r=–.059, p=.822). A scatterplot of the NIHSS scores against the 

baseline severity (AQ) indicates a curvilinear U-shaped association (Figure 58). 

 

 

Figure 58 Scatterplot of baseline stroke severity (NIHSS, 0-30) against baseline 
aphasia severity (AQ, 0-100) 

Red dots indicate patients with relatively good language and minimal stroke severity. This 
group is mainly constituted of anomic patients. Grey dots indicate two Broca patients. Blue 
dots indicate the more heterogeneous aphasia group with severely impaired language and 
severe stroke impairments. Green dots indicate patients with very severe stroke symptoms 
and moderate language impairments. 

Looking at the scatterplot of stroke severity against the baseline language severity, 

the cluster with the high AQ and low NIHSS (Figure 58, red) includes all but one 

patient that were classified as anomic aphasias on the baseline assessment (Table 

13). Patients 04,17 were both Broca aphasics (Figure 58, grey). The low AQ-mid 

range NIHSS cluster comprised of a heterogeneous aphasia group: Global (4), 

Broca  (3), Wernicke (1) aphasias (Figure 58, blue). The cluster scoring high on 

both scales included: anomia (1), transcortical motor, conduction, and Broca 

aphasias (Figure 58, green). The Broca patient in the last cluster is the only Broca 

 

 

 

Cluster 1 

Cluster 2 

Cluster 3 
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patient in the sample who was initially classified as ‘transcortical motor’ on the 

screening (Table 13). 

 

In a next step, group lesion overlay maps were calculated for each cluster indicated 

in red, blue and green in the scatterplot (Figure 59). Upon visual inspection it can 

be appreciated that group 1 (i.e. red cluster) has its maximal overlay in the posterior 

arm of the internal capsule bordering onto the posterior thalamus and the posterior 

lentiform nucleus; whereas the extent of maximal overlay is much bigger in group 2 

(i.e. blue cluster), reaching from the middle frontal gyrus down to the middle 

portions of the temporal lobe encompassing the basal ganglia, thalamus, capsules, 

and genu corpus callosum. For group 3 (i.e. green cluster) the maximal overlay is in 

the subcortical structures including the putamen, the globus pallidus, the internal 

capsule, the posterior lateral aspects of the thalamus, and the caudate nucleus  

(Figure 59). 

 

Figure 59 Lesion overlapping for the baseline NIHSS-AQ groups shown in figure 59 

Other relevant clinical measure besides stroke symptom severity is the presence of 

small vessel disease (SVD) as determined by radiological report. SVD was obtained 
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categorically and an independent t-test revealed no differences between the group 

with SVD and without for the initial aphasia severity (SVD=56.10±27.98, no-

SVD=34.67±24.63; t(16)=–1.708, p=.107). 

 

7.3 Structural MR imaging 

7.3.1 Visual lesion analysis on MR imaging contrasts (T2 FLAIR, DWI, ADC) 

All images were processed for visualisation by converting the original DICOM files 

obtained from the 3T MRI scanner into software readable files (i.e. NIFTI or 

ANALYZE). The diffusion-weighted images (DWI) and apparent diffusion coefficient 

(ADC) maps are automatically obtained from the pre-processing steps for diffusion 

tensor imaging tractography as described in the methods chapter (subchapter 

6.7.1). 

 

A summary of relevant neuroimaging scans of all patients (n=18) is provided in 

Figure 60. This figure shows that i) a lesion and lesion extent are easier identified 

on DWI over other structural imaging contrasts and ii) that lesion evolution can be 

staged based on the appearance on ADC contrast were lesions are either hyper- or 

hypointense. 

 

The signal intensity of the ADC maps suggests a spectrum from strongly 

hypointense to strongly hyperintense. This reflects the varying delay of scanning 

times after symptom onset (see Table 13). As described in the neuroimaging 

chapter (subchapter 5.1.6.3), the ADC measure drops immediately after vessel 

occlusion rendering the ischemic region hypointense. This initial signal drop is 

followed by an apparent signal normalisation (pseudonormalisation) and 

subsequent signal elevation. It can be appreciated that patient 10 presents with 

hypointense ADC signal whilst patient 14 presents with an elevated ADC signal. 

This indicates that the evolution of the lesioned tissue progressed to different stages 

in those two thrombolysed patients at the time of scanning. 

 

A summary of the anatomical locations of visually identified lesions together with 

their frequency is shown in Table 17. The most commonly lesioned areas are the 

frontal lobe gyri and subcortical structures. The corresponding scans can be found 
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in Figure 60. Given the two-dimensionality of the brain scans presented herein, the 

extent of some lesions cannot be entirely appreciated. 

 

Table 17 Lesion location summary (n=18) stratified by lobar and subcortical 
structures 

Region of Interest (left hemisphere) Total patients Patient ID 

FRONTAL LOBE   

Inferior frontal gyrus 6 02,10,15,16,17,18 

Middle frontal gyrus 5 02,03,15,16,18 

Superior frontal gyrus 3 02,06,15 

Operculum 5 04,05,09,10,15 

Precentral gyrus 3 12,15,16 

PARIETAL LOBE   

Post central gyrus 1 04 

Inferior lobus 1 05 

TEMPORAL LOBE   

Superior temporal gyrus 3 03,07, 13 

Middle temporal gyrus 1 13 

Anterior temporal gyrus 1 10 

Insular anterior/posterior 9/6 03,04,05,06,09, 
13,16,17,18/04,06,08,09,13,18 

OCCIPITAL LOBE   

 n/a n/a 

SUBCORTICAL STRUCTURES   

Putamen 10 02,03,07,08,09,10,13,14,18,19 

Globus pallidus 9 02,03,07,08,10,13,14,18,19 

Caudate nucleus 5 02,03,13,14,18 

Thalamus 2 01,18 

External capsule 5 03,13,14,18,19 

Internal capsule (posterior 
arm) 

7 01,04,08,13,14,18,19 

Corona radiata 7 04,07,08,09,17,18,19 

Periventricular abnormalities 4 06,07,10,16 

Small vessel disease 5 01,03,06,07,16 
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Figure 60 Native, acute stage MRI contrasts of individual subjects (n=18)  

All scans are shown in axial plane at the level of maximum infarct volume for each patient 
and hence the slice level might differ between patients  
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7.3.2 Advanced lesion analysis 

7.3.2.1 Voxelwise ‘topological’ lesion-deficit analysis 

For group comparison, lesion analysis was performed in 17 patients (one of the 18 

patients had to be excluded as no T1-weighted image was acquired). 

As a first step, percentage overlay maps were calculated from all 17 subjects using 

mricron. This analysis demonstrated that the most consistent overlay was in the 

inferior frontal gyrus, the internal and external/extreme capsules, the claustrum, the 

putamen, the medial thalamic nuclei, and the peri-insular white matter (Figure 61). 

 

Figure 61 Percentage lesion overlay map (0-100%) for the acute phase 

This figure demonstrates the lesion overlay of all recruited subjects. The highest overlay is 
seen in the peri-insular white matter of the external/extreme capsules and internal capsule, 
the claustrum, striatum and lateral thalamus. At the cortical level the lesion overlay was 
highest in the insula and the perisylvian cortex.. 

In the next step, a regression analyses was performed to identify lesion topology 

that might be predictive of a) overall aphasia severity and b) repetition deficits at 

baseline.  

This was achieved with a non-parametric mapping (NPM) linear regression lesion 

analysis based on a voxel-based lesion-symptom mapping approach as detailed in 

Chapter 6. The NPM regression analysis only took into account regions that were 

damaged in at least 10% of the patients. 

The first model was defined to identify the voxel associated with more severe 

aphasia at baseline. Hence, baseline severity of aphasia was set as the dependent 

variable and the following four regressors were added into the model: stroke 

severity (continuous), age (continuous), gender (dichotomous), and thrombolysis 

treatment (dichotomous). The regression revealed the highest predictive values in 

the white matter of the middle and inferior frontal gyri and the anterior insular ribbon 

-16 -8 0 8 16 24 32 40
Left Right
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(Figure 62). This result suggests that lesions to this area are predictive of initial 

aphasia severity at baseline. 

 

Figure 62 Lesion-symptom analysis for aphasia severity at baseline 

The results shown are correct for confounding variables as defined in the above paragraph. 
The shown results are z-transformed (reflected in the scalar colouring) with a significance 
level of p<.001. Results shown are corrected for multiple comparisons with permutation 
testing. 

The second model investigated the relation between repetition impairment at 

baseline and relevant voxels. Baseline variables entered into the model were the 

repetition score together with age, sex, thrombolysis and stroke severity (NIHSS). 

The results indicate that lesions to the white matter of the middle and inferior frontal 

gyri, peri-insular regions as well as the temporal stem are predictive of initial 

repetition deficits at baseline (Figure 63). 
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Figure 63 Voxel-based lesion-symptom mapping for repetition deficits and 
corresponding voxels 

The results shown are correct for confounding variables as defined in the above paragraph. 
The shown results are z-transformed (reflected in the scalar colouring) with a significance 
level of p<.05. Results shown are corrected for multiple comparisons with permutation 
testing. 

7.4 DTI analysis 

7.4.1 DTI Atlas-based ‘hodological’ analysis 

As a first step, the aforementioned atlas (available online: www.natbrainlab.com) 

was used as overlay on the acute lesion maps Figure 61. This approach has been 

used in our recent publications (Catani, Dell'Acqua, Bizzi, et al. 2012a; Thiebaut de 

Schotten, Tomaiuolo, et al. 2012c). This approach identified that in the acute stage, 

all perisylvian pathways had a minimum overlay with the group lesion map of 2%. 

However, the lesion overlay maximum (up to 90%) was centred on the anterior and 

long segment in particular. However the overlap often reaches much higher 

percentages (Figure 64). The affected pathways are the left-hemispheric inferior 

fronto-occipital fasciculus, the anterior commissure, the internal capsule and all 

three segments of the arcuate fasciculus, corpus callosum, cingulum, inferior 

longitudinal fasciculus and the left fornix. 
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Figure 64 DTI Atlas overlay on acute left-hemispheric lesion percentage maps 
(n=17) 

The colour coding of pathways is in accordance with the directional FA-colour coding 
(red=commissures, green=association, blue=projections). iFOF, inferior fronto-occipital 
fasciculus; AS, anterior segment; PS, posterior segment; LS, long segment; ILF, inferior 
longitudinal fasciculus. Where tracts cannot be appreciated on the lesioned hemisphere they 
are shown on the right hemisphere for reference (internal capsule and arcuate segments). 

It can be assumed from the lesion location that the fronto-parietal connections, 

namely superior longitudinal fasciculi (SLFs), were damaged as well, however, they 

are not reconstructable with DTI and no atlas is yet available online for overlay 

investigations. The SLF has been implicated in visuo-spatial attention (Thiebaut de 

Schotten, Dell'Acqua, et al. 2011a). 

 

7.4.2 Perisylvian pathway reconstructions  

Individual DTI reconstructions of the three arcuate segments were dissected in all 

patients (n=18) with three males and one woman presenting without the left anterior 

segment (patients 04, 07, 12, 15), two males without right long segment (patients 

10, 17), and one male without right posterior segment (patient 14) as well as one 

woman without left long segment (patient 12; Figure 65). 
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Figure 65 DTI reconstruction of the three segments of the arcuate fasciculus 

Individual diffusion tensor imaging (DTI) tractography reconstructions of the anterior (green), 
posterior (yellow) and long segment (red) of the left and right arcuate fasciculus post stroke. 
The arcuate is shown in all patients (n=18) in the dorsal, left-lateralised, and right-lateralised 
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view. The background image is the native diffusion-weighted scan of each individual patient 
to facilitate the identification of the lesion and to identify whether the lesion is encroaching 
on the perisylvian pathways. 

7.4.2.1 Indices of microstructure analyses 

Measures obtained from the dissections of the three segments in the left and right 

hemisphere as shown in Figure 65 were correlated and compared with regards to 

the behavioural data and possible gender differences. 

  

7.4.2.1.1 Trace or Mean diffusivity (MD) 

Independent t-test analyses between the sexes as well as between the thrombolysis 

groups revealed no differences in mean diffusivity in any of the segments (Table 

18). 
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Table 18 Independent t-test for mean diffusivity in the three arcuate segments. 

Mean Diffusivity in 
segments 

 n Mean (SD) t df p 

Left Anterior segment  Female 5 .000725(.000875) .411 13 .688 

(L_AS) Male 10 .000710(.0000604)    

 No rtPA 5 .000709(.0000552) –.222 13 .823 

 rtPA 10 .000718(.0000759)    

Right Anterior segment  Female 6 .000726(.0000763) .2421) 6.2 .766 

(R_AS) Male 12 .000718(.0000372)    

 No rtPA 5 .000735(.0000495) .739 16 .471 

 rtPA 13 .000715(.0000527)    

Left Posterior segment  Female 6 .000696(.0001228) –1.065 16 .303 

(L_PS) Male 12 .000744(.0000723)    

 No rtPA 5 .000785(.0000960) 1.725 16 .104 

 rtPA 13 .000706(.0000833)    

Right Posterior segment  Female 6 .000726(.0000477) .711 16 .487 

(R_PS) Male 12 .000662(.0002118)    

 No rtPA 5 .000725(.0000171) .609 16 .551 

 rtPA 13 .000668(.0002057)    

Left Long segment  Female 5 .000689(.0001081) –.075 15 .941 

(L_LS) Male 12 .000693(.0000848)    

 No rtPA 5 .000737(.0000829) 1.415 15 .178 

 rtPA 12 .000672(.0000872)    

Right Long segment  Female 6 .000706(.0000609) .839 15 .414 

(R_LS) Male 12 .000631(.0002120)    

 No rtPA 5 .000561(.0003170) –.9611) 4.0 .390 

 rtPA 12 .000698(.0000449)    
1) Levene’s test for equality of variance was significant hence the adjusted t and p values were used. 

 

At baseline, the WAB-R scaled composite section score for spontaneous speech 

positively correlated with the mean diffusivity in the left anterior and long segment 

(r=–.62, p=.024; r=–.56, p=.031). However, none of these correlations survived 

multiple comparison with the adjusted p value p=.0041. 
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7.4.2.1.2 Diffusivity along ellipsoidal axes (radial and axial diffusivity) 

Independent t-test analyses between the sexes as well as between the thrombolysis 

groups revealed no differences in perpendicular diffusivity in any of the segments 

(Table 19). 

 

Table 19 Independent t-test statistics for perpendicular diffusivity in the three 
arcuate segments. 

Perpendicular Diffusivity in 
segments 

 n Mean (SD) t df p 

Left Anterior segment  Female 5 .000567(.0000978) .783 14 .447 

(L_AS) Male 11 .000502(.0001728)    

 No rtPA 5 .000511(.0000483) .504 14 .622 

 rtPA 11 .000509(.0001833    

Right Anterior segment Female 6 .000537(.0000826) .1551) 6.6 .882 

(R_AS) Male 12 .000532(.0000466)    

 No rtPA 5 .000553(.0000680) .874 16 .395 

 rtPA 13 .000526(.0000555)    

Left Posterior segment  Female 6 .000551(.0001037) –.763 16 .457 

(L_PS) Male 12 .000581(.0000646)    

 No rtPA 5 000625(000911) 1.97 16 .066 

 rtPA 13 .000550(.0000645)    

Right Posterior segment  Female 6 .000564(.0000603) .768 16 .454 

(R_PS) Male 12 .000509(.0001671)    

 No rtPA 5 .000571(.0000479) .812 16 .429 

 rtPA 13 .000511(.0001620)    

Left Long segment  Female 6 .000436(.0002299) –.8001) 5.4 .457 

(L_LS) Male 12 .000513(.0000676)    

 No rtPA 5 .000553(.0000779) 1.25 16 .231 

 rtPA 13 .000462(.0001538)    

Right Long segment  Female 6 .000504(.0000592) 1.215 16 .242 

(R_LS) Male 12 .000405(.0001918)    

 No rtPA 5 .000387(.0002205 –.815 16 .427 

 rtPA 13 .000458(.0001438)    
1) Levene’s test for equality of variance was significant hence the adjusted t and p values were used. 

 

At baseline no correlations were evident between perpendicular diffusivity and 

overall language severity (L_AS: r=.15, p=.642; R_AS: r=.14, p=.663; L_PS: r=.187, 
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p=.561; R_PS: r=–.194, p=.545; L_LS: r=.304, p=.337; R_LS: r=.568, p=.054). 

Likewise, no correlations were found with the scaled composite section scores of 

the WAB-R. 

 

For axial diffusivity, independent t-test analyses between the sexes as well as 

between the thrombolysis groups revealed no differences in any of the segments 

(Table 20). At baseline, no correlations were found between the initial axial 

diffusivity and language severity (L_AS: r=.345, p=.272; R_AS: r=.412, p=.183; 

L_PS: r=.210, p=.512; R_PS: r=–.136, p=.673; L_LS: r=.307, p=.331; R_LS: r=.303, 

p=.339). 
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Table 20 Independent t-test statistics for axial diffusivity in the three arcuate 
segments 

Axial Diffusivity in segments  n Mean (SD) t df p 

Left Anterior segment  Female 6 .000868(.004312) .67 16 .948 

(L_AS) Male 12 .000854(.0004079)    

 No rtPA 5 .001025(.0000802) 1.7291) 13.7 .206 

 rtPA 13 .000795(.0004605)    

Right Anterior segment Female 6 .001104(.000656) .432 16 .671 

(R_AS) Male 12 .001092(.0000553)    

 No rtPA 5 .001100(.0000450) .207 16 .839 

 rtPA 13 .001094(.0000629)    

Left Posterior segment  Female 6 .000985(.0001750) –1.325 16 .204 

(L_PS) Male 12 .001071(.0001013)    

 No rtPA 5 .001104(.0001358) 1.260 16 .226 

 rtPA 13 .001018(.0001274)    

Right Posterior segment  Female 6 .001049(.0000420) .622 16 .543 

(R_PS) Male 12 .000969(.0003090)    

 No rtPA 5 .001031(.000616) .364 16 .720 

 rtPA 13 .000982(.0002973)    

Left Long segment  Female 5 .001020(.0001440) –.427 15 .675 

(L_LS) Male 12 .001053(.0001397)    

 No rtPA 5 .001106(.0001032) 1.244 15 .233 

 rtPA 12 .001017(.0001448)    

Right Long segment  Female 6 .001111(.000732) .722 15 .482 

(R_LS) Male 11 .001009(.0003379)    

 No rtPA 5 .000910(.0005111) –.8351) 4.0 .450 

 rtPA 12 .001101(.0000562)    
1) Levene’s test for equality of variance was significant hence the adjusted t and p values were used. 

 

7.4.2.1.3 Fractional Anisotropy (FA) 

Independent t-test analyses between the sexes as well as between the thrombolysis 

groups revealed no differences in fractional anisotropy in any of the segments 

(Table 21). 

At baseline, no correlations were found between overall aphasia severity (AQ) and 

fractional anisotropy in any of the segments (L_AS: r=–.116, p=.749; R_AS: r=–.09, 

p=.805; L_PS: r=.00, p=1.0; R_PS: r=–.119, p=.744; L_LS: r=.00, p=.999; R_LS: 
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r=.253, p=.481). No correlation was found between FA and the WAB-R scaled 

composite section scores. 

 

Table 21 Independent t-test statistics for fractional anisotropy measures in the 
three arcuate segments 

Fractional Anisotropy (FA)   n Mean (SD) t df p 

Left Anterior segment  Female 5 .393346(.0631921) .321) 5.0 .976 

 Male 10 .392389(.0313735)    

 No rtPA 5 .393906(.0338705) .075 13 .941 

 rtPA 10 .392109(.0474167)    

Right Anterior segment Female 6 .449996(.0509789) .123 16 .904 

 Male 12 .446966(.0484112)    

 No rtPA 5 .432450(.0692605) –.848 16 .409 

 rtPA 13 .453947(.0386805)    

Left Posterior segment  Female 6 .365534(.0529254) –.654 16 .523 

 Male 12 .379759(.0384978)    

 No rtPA 5 .355889(.0688308) –.8341) 4.5 .446 

 rtPA 13 .382375(.0283341)    

Right Posterior segment  Female 6 .391011(.0487201) .449 16 .659 

 Male 12 .366701(.1262992)    

 No rtPA 5 .374259(.0737695) –.013 16 .990 

 rtPA 13 .375015(.1182965)    

Left Long segment  Female 5 .415359(.0470804) –.816 15 .427 

 Male 12 .436157(.0481750)    

 No rtPA 5 .425218(.0455957) –.263 15 .796 

 rtPA 12 .432048(.0499468)    

Right Long segment  Female 6 .475814(.0351361) .462 15 .651 

 Male 11 .446770(.1496651)    

 No rtPA 5 .403598(.2263959) –.7451) 4.0 .497 

 rtPA 12 .479281(.0273152)    

1) Levene’s test for equality of variance was significant hence the adjusted t and p values were used. 

 

7.4.2.1.4 Volumetric measures (number of voxels) 

A partial correlation between the overall aphasia score at baseline and volumetric 

measures of all segments controlled for lesion size, thrombolysis, age and sex 

showed no significant association Table 22). 
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The four scaled composite section scores and the additional raw scores for fleuncy 

of the WAB-R were entered into the partial correlation analysis (Table 22). After 

correction the following association was significant. Comprehension was positively 

correlated with the right long segment. 

 

Table 22 Partial correlations (uncorrected) between volume of the three segments 
and the overall baseline aphasia severity (B_AQ) and four scaled composite section scores 
and the additional raw score for fluency of the WAB-R 

   

 B_AQ SS Comp Rep Nam SF PF 

Anterior segment 
(AS) 

        

Left AS Corr. .406 1.09 –.003 .441 .447 .171 –.220 

p .150 .735 .993 .151 .145 .595 .570 

df 12 10 10 10 10 10 7 

Right AS Corr. .237 .601 –.001 .194 .465 .449 .727 

p .414 .039 .998 .545 .128 .144 .027 

df 12 10 10 10 10 10 7 

Posterior segment 
(PS) 

        

Left PS Corr. -.056 –.140 .093 .266 .216 –.301 –.464 

p .848 .664 .774 .403 .501 .342 .209 

df 12 10 10 10 10 10 7 

Right PS Corr. .235 .177 .247 .327 .383 .189 .047 

p .418 .583 .438 .299 .219 .556 .905 

df 12 10 10 10 10 10 7 

Long segment (LS)         

Left LS Corr. .185 .246 .532 –.002 .022 .194 .240 

p .527 .441 .075 .994 .945 .546 .533 

df 12 10 10 10 10 10 7 

Right LS Corr. .529 .595 .818 .436 .299 .591 .433 

p .052 .041 .001* .156 .346 .043 .245 

df 12 10 10 10 10 10 7 

Control Variables: Thrombolysis, age, sex, lesion size 
B_AQ, baseline aphasia quotient; SS, spontaneous speech; Comp, comprehension; Rep, repetition; 
Nam, naming; SF, semantic fluency; PF phonemic fluency 
* Bonferroni corrected p-value is p≤0.001 
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CHAPTER 8 FOLLOW-UP ASSESSMENT (6 MONTHS) 

This subchapter investigates the correlation between behavioural and neuroimaging 

data collected at baseline and the severity of aphasia at six months after symptom 

onset.  

 

8.1 Patients 

16 patients kindly made themselves available for a longitudinal language 

assessment (10 males; mean age 60.38 years±17.26 years; age range 28-87 years; 

please see Table 13 in Chapter 7). Two male patients (14,16) withdrew and no 

longitudinal data are available. Information from their families suggests that they 

made a full functional recovery. 

 

8.2 Longitudinal language assessment 

The very same version of the WAB-R used at baseline was re-administered after six 

months and measures of aphasia severity and the performance on the 32 subscales 

of the WAB-R were obtained (Table 23). Out of the 16 patients who returned, 

81.25% of patients were still aphasic according to WAB-R criteria. Three patients 

recovered fully (AQ≥93.8). 
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Table 23 WAB-R scores six months from stroke stratified by gender. 

 

Demographical data. A correlation analysis showed that aphasia severity at six 

months is not significantly associated with age and sex respectively (age: r=–.39, 

p=.15; sex: r=.09, p=.74).  

Possible gender differences were analysed with an independent t-test analysis. At 

follow-up, no significant differences in aphasia severity were observed 

(AQ♂=86.5±7.5; AQ♀=84.3±10.4; t(14)=–.510, p=0.62). Also, no significant gender 

difference was observed in scores on the WAB-R subscales. 

 

Lesion factors. A Kolmogorov–Smirnov test for normality showed that lesion size 

was not normally distributed (D(18)=.297, p<.000), hence non-parametric tests were 

 LONGITUDINAL (6 months) 

 Females Males 

 n Mean (SD) n Mean (SD) 

Total AQ score (0-100) 6 84.25(4.23) 10 86.53(2.39) 

     

AQ subscales     

Spontaneous speech (0-20) 6 16.00(1.53) 10 16.50(0.87) 

Comprehension (0-10) 6 8.98(0.49) 10 9.43(0.15) 

Repetition (0-10) 6 9.08(0.31) 10 8.92(0.34) 

Naming (0-10) 6 8.07(0.51) 10 8.42(0.30) 

     

Individual tasks     

Information content (0-10) 6 8.00(1.07) 10 8.90(0.28) 

Fluency (0-10) 6 8.00(1.00) 10 7.60(0.62) 

Comprehension (0-60) 6 57.00(1.55) 10 59.10(0.46) 

Auditory recognition (0-60) 6 58.83(0.65) 10 59.00(0.37) 

Sequential commands (0-80) 6 63.67(7.89) 10 70.60(2.75) 

Repetition (0-100) 6 90.83(3.12) 10 89.20(3.41) 

Naming (0-100) 6 51.50(2.95) 10 54.60(1.80) 

Semantic fluency (0-20) 6 11.17(2.06) 10 9.90(1.55) 

Phonemic fluency (extra) 5 13.00(5.19) 10 10.20(2.76) 

Sentence completion (0-10) 6 8.33(0.62) 10 10.00(n/a) 

Responsive speech (0-10) 6 9.67(0.33) 10 9.70(0.21) 
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used to further investigate the influence of lesion size. No significant association 

was observed between initial lesion size and aphasia severity after six months (r= –

.276, p=0.30). 

 

Clinical factors. Initial stroke severity (NIHSS) was not correlated with the 

longitudinal aphasia severity (r=–.044, p=.877). 

The potential influence of clinical and demographic baseline measures to predict 

aphasia severity at six months was investigated with a two-stage hierarchical 

multiple regression analysis. Two subsequent models were defined whereby the 

aphasia severity six months after symptom onset was defined as the dependent 

variable. 

The following admission measures were defined as independent variables: baseline 

AQ (continuous), stroke severity (NIHSS, continuous), age (continuous), sex 

(dichotomous), and in the second model thrombolysis treatment (dichotomous) was 

added. 

The first-stage hierarchical regression model was not significant (R2=.532, 

F(4,10)=2.838, p=.082) and the second-stage model where thrombolysis treatment 

was added was also not significant (R2=.556, F(5,9)=2.254, p=.137) with no 

significant increase in the predictive power of the model (53% to 56%; p=.500). 

 

Other relevant clinical measure besides stroke symptom severity is the presence of 

small vessel disease (SVD) and thrombolysis treatment (rtPA). 

SVD was obtained categorically and an independent t-test revealed no differences 

between the group with and without SVD for longitudinal aphasia severity (AQ: 

SVD=85.23±8.07, no-SVD=85.94±9.08; t(14)=.157, p=.878). 

For thrombolysis, independent t-test analyses showed no difference between the 

thrombolysed and non-thrombolysed groups in relation to their longitudinal aphasia 

severity (rtPA(n=11): 85.18±8.455, No- rtPA (5): 85.9±8.839; t(14)=–.153, p=0.881). 

No significant difference was observed for patients that received thrombolysis and 

those that did not with regards to their aphasia severity after six months (rtPA 

(n=11): 85.90±8.84, No- rtPA (n=5): 85.18±8.46; t(14)=–.153, p=.881). Likewise, no 

difference was recorded in their percentage gain (rtPA (n=11): 415.74±585.86, No- 

rtPA (n=5): 117.58±150.04; t(14)=–1.102, p=.289). 
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A univariate analysis of variance with repeated measure was used to investigate 

whether significant changes occurred between the two time points of assessment 

(baseline/ follow-up) with the presence of thrombolysis treatment as the between-

subject factor. This analysis shows that the factor time is significant (F(1,14)=34.678, 

p<.000) with no significant influence of treatment (i.e. rtPA) (F(1,14)=.836, p=.376; 

Figure 66). 

A power calculation revealed that the critical t-value of t=1.654 would be reached for 

a one-sided independent t-test with an effect size of 0.5, a significance level of 

α=0.05 with a sample size of 176 total participants (88 in each group). Further 

interference on the influence of thrombolysis can therefore not be undertaken within 

this study. 

The identification of significant differences necessitates a much larger cohort, 

however, primary analysis indicates that patients receiving thrombolysis have lower 

AQ scores at baseline (i.e. more language impairment), a steeper recovery slope, 

and slightly better recovery compared to the non-thrombolysed group. These 

tendencies await further confirmation within a large clinical trial. 
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Figure 66 Thrombolysis treatment (TPA) in the present cohort 

The bar graphs visualise the percentage of recovered patients (top left) and the gender 
distribution (top right) within the thrombolysis groups. Recovery is defined as an absolute 
AQ score at six months above 93.8. The lower panel shows the repeated measures ANOVA 
plot for the baseline against the follow-up assessment with the in-between factor 
thrombolysis. The means and standard deviations are shown. 

 

8.3 Comparison of baseline and longitudinal aphasia severity 

On average, a significant improvement was observed between the two 

assessments (AQBaseline=43.48±28.00, AQ6-months=85.68±8.44; t(15)=– 6.759, p<.001). 

All patients improved compared to the baseline assessment but with a varying 

degree of recovery (Figure 67). To account for this spectrum of recovery the 

percentage of gain was calculated using the formula [(y-x)/x)*100] where y is the 

longitudinal severity and x is the baseline severity. This calculation yielded only 

positive values (as all patients improved). 
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Figure 67 Mean and individual recovery curves 

Mean (left) and individual (right) recovery curves between baseline assessment and six 
months follow-up (n=16). The left plot shows the group mean between the two time points in 
comparison to the individual curves on the right. 1–5 are the severity classifications 
according to the WAB-R manual. The blue dotted line indicates the cut-off for normal 
language functions (AQ≥93.8; AQ ranges between 0-100), which was reached by three 
patients six months after symptom onset. 

Baseline aphasia severity was positively correlated with the longitudinal aphasia 

severity (r=.49, p≤.054) with the regression formula: baseline AQ = 79.246 + 0.148* 

follow-up AQ. The correlation coefficient (R2) for the regression line is 0.241 (Figure 

68, top).  

Instead of looking exclusively at the absolute aphasia severity after six months, I 

investigated the percentage of gain for each patient. When plotting the percentage 

of gain over the baseline severity a curvilinear association was observed (Figure 

68, bottom left). Parametric testing is not suitable for non-linear associations and 

the variable percentage gain was hence logarithmically transformed to linearise the 

data and to achieve a log-normal distribution. A regression model with both 

variables, the baseline severity as independent variable and the percentage in gain 

as dependent variable, was significant (R2=.524, F(1,14)=16.888, p≤.001) with the 

baseline severity as predictor (beta=–.739, t(–4.109), p≤.001). The regression 

error bars: 95% confidence interval

Baseline 6 months

TIME

Baseline 6 months

TIME

A
p

h
as

ia
 s

e
ve

ri
ty

 (
A

Q
)

A
p

h
as

ia
 s

e
ve

ri
ty

 (
A

Q
) 

m
e

a
n

1

2

3

4

5

1

2

3

4

5

1 very severe aphasia 0-25
2 severe aphasia 26-50
3 moderate aphasia 51-75
4 mild aphasia 75+
5 normal language >=93.8

DTIstroke01
DTIstroke02
DTIstroke03
DTIstroke04
DTIstroke05
DTIstroke06
DTIstroke07
DTIstroke08

DTIstroke09
DTIstroke10
DTIstroke12
DTIstroke13
DTIstroke15
DTIstroke17
DTIstroke18
DTIstroke19



Part II. Experimental data  Follow-up assessment (6 months) 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 235 

function can be resolved with y=(b0+b1(lnx1)+e)^2, where b0 is the constant beta, 

b1 is the predictor beta and e is the error. 

 

 
Figure 68 Relation between baseline severity and longitudinal severity 

The top panel shows the raw data of longitudinal severity over baseline severity (AQ) with 
95% confidence intervals (CI, curved lines). The bottom panels show the curvilinear 
association between percentage in gain ([(longitudinal AQ-baseline AQ)/baseline AQ)*100]) 
and baseline severity (left). Due to the non-linearity of the raw data a logarithmic 
transformation on the percentage of gain was conducted and the corresponding scatterplot 
is shown on the bottom right. 

A median split (AQ=43) allowed us to compare 50% of patients that score on the 

lower and the higher end of the scale with regards to their percentage in gain. A 

significant improvement was observed for the patients with more severe aphasia at 

baseline (AQ<43; mean=608.10±599.48) compared to the patients with more 

moderate expressions of aphasia (AQ≥43; mean=37.02±11.75; t(7.043)=–2.69, 

p≤.05). 
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At baseline, twelve patients were classified with non-fluent aphasia and six patients 

were classified with fluent aphasia. When comparing their longitudinal aphasia 

severity, no difference was observed (AQnon-fluent =84.209±8.119, AQfluent 

=88.900±9.149; t(14)= –1.032, p≤.319). 

The overall longitudinal severity was associated with the baseline auditory word 

recognition ability and the initial semantic fluency (Table 15). 

 

Table 24 Correlation between baseline WAB-R subscales and the AQ at follow-up. 

WAB-R baselines 6 month AQ 

Content r=.370,ns 

Grammar r=.377,ns 

Comprehension r=.276, ns 

Auditory word recognition r=.608* 

Sequential commands r=.348, ns 

Repetition r=.343, ns 

Naming r=.045, ns 

Fluency (semantic) r=.556* 

Fluency (phonemic) r=.545, ns 

Sentence completion r=.373, ns 

Responsive speech r=.320, ns 

* Correlation is significant at 0.05 level (2-tailed) 
ns, Correlation is not significant 
WAB-R, Western Aphasia Battery; AQ, Aphasia Quotient 

 
 

This relation was further investigated with a multiple linear regression analysis. The 

individual subscales of the WAB-R at baseline were entered into a regression 

analysis to investigate whether their influence on the longitudinal severity is 

independently predictive.  

The linear regression model included six continuous baseline variables: the overall 

aphasia severity at baseline as well as the individual subscales: spontaneous 

speech, naming, comprehension, repetition, and semantic fluency. Bonferroni 

corrected significance threshold of p=0.0083 was applied. The model was not 

significant and none of the entered variables reached significance (F(6,8)=1.579, 

p=0.268). 
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Taxonomical classification changes were also observed as is shown in Figure 69. 

Six months after symptom onset most patients were classified as anomic (68.75%), 

and three patients (18.75%) made a full recovery in terms of their language 

functions (i.e. AQ≥93.8). The remaining two patients were one Wernicke patient and 

one transcortical motor aphasia patient. 

 

 

Figure 69 Taxonomical classification 

This figures shows the taxonomical classification of all recruited patients at screening (on 
average 3 days post onset), at baseline (on average 5 days post onset), and at follow-up (on 
average 120 days post onset) 

 

8.4 Voxelwise ‘topological’ lesion-deficit analysis 

The non-parametric mapping (NPM) linear regression lesion analysis based on a 

voxel-based lesion-symptom mapping approach used at baseline was implemented 

again to investigate which voxels are predictive of longitudinal aphasia severity. 

The NPM regression analysis only took into account regions that were damaged in 

a minimum of 2 patients (10%) of the patients (n=15). 

Longitudinal severity of aphasia was set as dependent variable and the following 

four regressors were added into the model: stroke severity (continuous), age 

(continuous), gender (dichotomous), thrombolysis (dichotomous). The regression 

revealed the white matter of the middle and inferior frontal gyri, the white matter in 

the transition of the posterior superior temporal gyrus to the inferior parietal lobe 

(not shown in figure) and Heschl’s gyrus as the areas that are predictive of 

longitudinal aphasia severity (Figure 70). 
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Figure 70 Voxel-based lesion-symptom mapping for the longitudinal aphasia 
severity. Results shown are corrected for multiple comparisons with permutation testing. 

The results shown are corrected for confounding variables as defined in the above 
paragraph. The shown results are z-transformed (reflected in the scalar colouring) with a 
significance level of p<.001. 

 

8.5 Trackwise ‘hodological’ lesion-deficit analysis 

A key question of interest to this study was whether a disconnection of the arcuate 

fasciculus is predictive of longitudinal aphasia severity as was hypothesised since 

the 19th century.  

These objectives were tackled by employing a novel hodological lesion-deficit 

analysis whereby an MNI-based atlas was used as overlay on study-specific MRI 

scans collected at baseline (see 6.9.2.2). Values representing the amount of 

damage to an arcuate segment were obtained for each patient and then binarised 

for when a tract was present in more than 50% of people, hence a score >2 (Table 

25). 
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Table 25 Hodological lesion analysis 

 “Lesion Load” >50% chance of dissection 

ID LS AS PS LS AS PS 

01 1 0 0 0 0 0 

03 1 1 0 0 0 0 

04 4 2 1 1 0 0 

05 3 2 4 1 0 1 

06 4 0 4 1 0 1 

07 4 4 4 1 1 1 

08 3 1 0 1 0 0 

09 4 2 1 1 0 0 

10 4 4 4 1 1 1 

12 4 4 1 1 1 0 

13 1 0 2 0 0 0 

14 2 1 0 0 0 0 

15 1 1 0 0 0 0 

16 1 0 0 0 0 0 

17* 0 0 0 0 0 0 

18 4 1 0 1 0 0 

19* 0 0 0 0 0 0 

ID, identification of patients 
LS, long segment of the arcuate fasciculus 
AS, anterior segment of the arcuate fasciculus 
PS, posterior segment of the arcuate fasciculus 
(Note: Patient 2 is missing in this list as no T1-weighted image was acquired that could have 
been used for the overlay.) 
*Patients where lesions are quantified as ‘0’ did not show any lesion-arcuate overlap on their 
T1-weighted image, despite having a confirmed stroke lesion and presenting with aphasia.  

 

A multiple linear regression analysis was conducted for each segment at a time. 

Aphasia severity at baseline and longitudinally (continuous) was separately defined 

as the dependent variable and lesion volume (continuous), age (continuous), 

gender (binary) and disconnection of each segment (binary13) as independent 

variables. None of the models identified the dissections of the three segments in the 

left hemisphere as predictors of aphasia severity at baseline or after six months 

(Table 26). 

 

 

                                                
13 A binary classification was used as the underlying lesion load coding (i.e. 0-4) 
cannot be considered linear and is defined normative. 
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Table 26 Trackwise hodological regression analysis for aphasia severity 

 Baseline AQ  Follow-up AQ  

Model 1: Long Segment F(4,13) = 1.575  p = .239 F(4,11) = 2.209 p =.135 

Predictive variables entered     

Disconnection B = –29.742  p = .054 B = –7.606 p = .093 

Age B = – 0.027  p = .940 B = –.232  p = .073 

Sex B = –11.648  p = .453 B = –2.306 p = .610  

Lesion size B = 0.000  p = .394 B = 0.000 p = .389 

     

Model 2: Anterior Segment F(4,13) = 1.173  p = .367 F(4,11) = 2.8 p =.079 

Predictive variables entered     

Disconnection B = –32.259  p = .105 B = –11.046 p = .045 

Age B = .129  p = .738 B = –.183  p = .139 

Sex B = 2.863  p = .837 B =1.271 p = .742  

Lesion size B = 0.000  p = .679 B = 0.000 p = .774 

     

Model 3: Posterior Segment Missing correlation    

 

In the next step, the ancillary question was addressed whether the classical 

hypothesis that Broca’s and Wernicke’s connections (i.e. long segment) is important 

for repetition can be demonstrated using DTI. To tackle the latter the WAB-R scale 

repetition was used, which assesses single word and sentence repetition, whilst 

including oral agility items, a sentence of only monosyllabic words, and a sentence 

with all letters of the alphabet (see Appendix C. Western Aphasia Battery Revised 

(WAB-R). 

The same approach was employed to investigate if the lesion load to the long 

segment in the left hemisphere is predictive of repetition deficits at baseline. The 

model was not significant for the baseline repetition deficit (R2=.324, F(4,11)=1.317, 

p=.323) or the longitudinal baseline repetition deficit (R2=.477, F(4,11)=2.504, p=.103; 

Table 27).  
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Table 27 Trackwise hodological regression analysis for repetition 

 Baseline AQ  Follow-up AQ  

Model 1: Repetition F(4,11) = 1.317  p = .323 F(4,11) = 2.504      p =.103 

Predictive variables entered     

Long segment disconnection B = –4.299  p = .046 B = –5.919 p = .217 

Age B = – 0.010  p = .853 B = –.320  p = .029 

Sex B = –2.642  p = .217 B = –5.668 p = .261 

Lesion size B = –1.711E-
005  

p = .558 B = 0.000 p = .172 

     

 

8.6 Right hemispheric perisylvian network (paper under review) 

8.6.1 Inter-rater variability analysis 

Two anatomists used TrackVis (www.trackvis.org) for virtual dissections and volume 

measurements of the long segment of the right arcuate fasciculus in all participants 

and achieved a high inter-rater reliability (r = 0.635; p<0.000). The second analyst 

was blinded to the symptoms of the patients and was only given the data set without 

further information apart from the presence of the lesion. 

 

8.6.2 Volumetric analysis  

 

In this study, our primary goal was to identify anatomical predictors of aphasia 

recovery. Hence, we limited our model to factors that could directly influence the 

anatomy of the three segments of the arcuate fasciculus. Previous studies have 

shown that amongst these factors are age (i.e. smaller arcuate in older patients; 

Bava et al., 2011; Lebel et al., 2011), gender (i.e. larger right arcuate in females; 

Catani et al., 2007; Kanaan et al., 2012; Inamo et al., 2011; Hsu et al., 2008), lesion 

size (i.e. smaller arcuate in larger lesions; Johansen-Berg & Behrens, 2006; 

Goldberg & Ransom, 2003; Ciccarelli et al., 2008), and level of education (i.e. 

higher education level might be neuroprotective; Stern et al., 1994; Ott et al., 1995; 

Letenneur et al, 1999; Brayne et al., 2010). Other studies have also shown baseline 

aphasia severity is predictive of longitudinal out come (Ferro et al., 1999; Pedersen 

et al., 2004; Laska et al., 2001; Lazar et al., 2007; Kertesz 1988b), which we were 

not able to include in our analysis. Previous studies show that baseline 

measurement fluctuations occur within a fortnight of symptom onset due to clinical-
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physiological processes and the influence of psychodynamic mechanisms (Hillis et 

al., 2001; Hackett et al., 2005; Gottesman et al., 2010; Lazar et al., 2008). For this 

reason, baseline language measures in relation to longitudinal therapeutic goals are 

usually obtained after two weeks from onset to allow sufficient time for acute 

processes to settle. In the current study, baseline measures were obtained on 

admission (mean 5±5 days) and therefore are not reliable indices of language 

impairment. Indeed, in our sample severity of aphasia at baseline is not correlated 

with the language score obtained six months after (r(16)=.49, p>.05).  

To determine which one of these variables (age, gender, lesion size, level of 

education) are most relevant to our data and to identify the best subset of variables 

explaining the dependent variable (i.e. longitudinal aphasia severity) they were 

introduced to a backward elimination analysis. This method places all possible 

variables, as identified from the literature or driven by a hypothesis, in the model 

and calculates the contribution of each of them. Their contribution is then compared 

against a removal criterion (here we used a probability value for the test statistic of 

p>0.001). The variable with the least contribution to the model is then removed and 

the reduced model re-estimated for the remaining variables. The contribution of the 

remaining variables is re-assessed in an iterative way until the model reaches 

statistical significance.  

The resulting subset of variables was introduced into subsequent regression 

analyses. The primary analysis employed a hierarchical multiple linear regression. 

In this analysis, two subsequent models were defined with the longitudinal aphasia 

severity, defined as the absolute aphasia Quotient (AQ) value obtained after six 

months, as the dependent variable. The first-level model included the variable 

subset identified by the backward elimination, namely age, gender, and lesion size. 

In the second-level of the model the three segments index sizes were separately 

added to model. 

Where both models were significant, the fit of each model was estimated by 

calculating the corrected Akaike information criterion for small sample sizes (AICc) 

(Akaike 1974; Hurvich & Tsai 1989). The AICc is a goodness of fit measure 

corrected for model complexity (i.e. penalising increasing number of predictors). We 

used this analysis to compare both levels of the regression models and to verify that 

the increase in predictive power of the second-level model is not merely driven by a 

higher number of predictors.  
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The secondary analysis addressed group differences between gender, fluent vs. 

non-fluent aphasia types (defined according to a cut-off of 4 on the WAB-R fluency 

scale), and thrombolysis groups (thrombolysed vs. non thrombolysed). 

Statistical analyses were performed using R 2.15.1 software (www.R-project.org). 

Power analysis was conducted using the software package G*Power 

(http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/). 

 

Identification of previously established predictors of symptoms severity 

Based on previous studies we considered age, gender, lesion size, and education 

as potential predictors of aphasia severity at 6 months (Eslinger & Damasio 1981; 

Laska et al. 2001; Ferro & Madureira 1997; McDermott et al. 1996). In addition 

these factors can also influence the anatomy of the white matter tracts (Lebel & 

Beaulieu 2009; Thiebaut de Schotten, Cohen, et al. 2012a). In order to confirm 

whether these factors significantly influence language outcomes in our dataset a 

backward regression analysis was conducted. This method introduces all potential 

variables into the model at once before subsequently eliminating each independent 

variable, starting with the variable with the smallest partial correlation coefficient. A 

conventional significance level of 0.1 was assumed for this analysis. The analysis 

shows that when all variables are included, the model is not significant for predicting 

longitudinal language outcomes (R2=.605, F(4,9)=3.448, p=.06). The subsequent 

analysis removed education from the variables and the model become significant 

including only age, gender, and lesion size (R2=.596, F(3,10)=4.921, p=.024). This 

result is in line with the literature where education has no strong evidence of being 

an independent predictor of long-term recovery (Ferro et al. 1999). Based on these 

findings age, gender and lesion size are good predictors of recovery in our dataset. 

This subset of variables was therefore taken into account for subsequent regression 

analyses. 

 

Diffusion Tensor Imaging (DTI) tractography 

The volume, defined as the number of voxels intersected by the streamlines of each 

segment, was extracted for the left and right hemispheres for each patient (Table 

28). 
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Table 28 Volumetric measures (number of voxels) of all three segments in both 
hemispheres 

 

Left Hemisphere Right hemisphere 

 

Volume 3 segments Volume 3 segments 

ID LS AS PS LS AS PS 

1 533 283 529 920 360 381 

2 1138 475 775 666 637 692 

3 1191 610 894 545 633 778 

4 1705 0 517 742 678 545 

5 356 605 310 445 388 627 

6 489 347 284 830 346 269 

7 1234 104 327 285 765 378 

8 861 851 811 432 626 750 

9 736 552 1014 563 557 1015 

10 488 397 796 0 720 374 

12 0 0 699 672 482 300 

13 959 786 581 439 743 660 

14 880 660 440 161 399 0 

15 830 0 589 385 347 339 

16 780 242 669 380 643 448 

17 659 232 765 0 378 112 

18 532 287 623 582 841 293 

19 622 496 569 206 1971 628 

ID=identification number, AS=anterior segment, 

PS= posterior segment, LS=long segment 

 

Left hemisphere. The hierarchical regression analysis showed that a model 

including age, gender and lesion size was predictive of longitudinal aphasia severity 

(R2=.502, F(3,11)=3.689, p=.047). The predictive value of the model improved but not 

significantly when the volume of the left long segment was included in addition to 

age, gender and lesion size (R2=.623, F(4,10)=4.138, p=.031; R2 change: 

F(1,10)=3.235, p=.102). Among the four variables entered only lesion size was an 

independent predictor [beta=–.630, t(–3.129), p=.011] of longitudinal aphasia 

severity.  

The same analysis was repeated for the left anterior and posterior segments of the 

arcuate fasciculus and both models were not predictive (anterior segment index 

size: R2=.541, F(4,10)=2.943, p=.076; posterior segment index size: R2=.577, 

F(4,10)=3.411, p=.053). The result indicates that by taking into account all three 
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predictors the left hemispheric model can explain approximately 50% of the 

variability in language recovery. By adding the volume of the left long segment the 

model can explain 62% of the variability, which represents only a 12% increase in 

predicting value. Overall, this analysis indicates that in the left hemisphere the only 

independent predictor of longitudinal aphasia is the lesion size. It should be taken 

into consideration here, however, that the volume measurements of the left and 

right arcuate segments reflect two different anatomical properties of these fibres. In 

the right hemisphere the volume of the tracts reflects the anatomy of a pre-existing 

tract, which is unaffected by the stroke. By contrast, in the left hemisphere tract 

volume measurements are indicative of the residual fibres whose quantity depends 

on the amount of damage occurred in the middle cerebral artery territory. Hence, 

while the right tract measurements reflects the anatomical volume of the pre-

existing arcuate the left tract volume is an indirect measure of lesion load 

specifically to the arcuate fasciculus. We therefore investigated if the lesion size and 

the volume of the left arcuate segments correlate, which was not the case for the 

left long segment nor the sum of the three segments in the left hemisphere (left long 

segment: r(18)=.224, p=.372; sum of left three segments: r(18)=.078, p=.760). Also 

when adding the sum of the three segment as a predictor to the regression model, 

the model did not explain the observed data (level 1(age, gender, lesion size): 

R2=.275, F(3,12)=1.52, p=.260; level 2 (addition of the left three segments: R2=.305, 

F(4,11)=1.206, p=.362; R2 change: R2=.030, F(1,11)=.467, p=.508).  

 

Right hemisphere. The hierarchical regression analysis showed that a model 

including age, gender and lesion size was not predictive of longitudinal aphasia 

severity (R2=.275, F(3,12)=1.52, p=.260). The predictive value of the model improved 

significantly when the volume of the right long segment was included in addition to 

age, gender and lesion size (R2=.568, F(4,11)=3.62, p=.041; R2 change: F(1,11)=7.462, 

p=.020). Of the four predictors only age [beta=–.678, t(–3.087), p=.010] and the 

right long segment [beta=.730, t(2.732), p=.020] were independent predictors. 

Gender [beta=.505, t(1.920), p=.081] and lesion size [beta=-.441, t(–2.04), p=.066] 

were marginally significant. For the right hemisphere the model that includes only 

age, gender and lesion size explains about 30% of the variance of language 

performances at 6 months (R2=.275, F(3,12)=1.520, p=.260). By adding the volume of 

the right long segment the model increases to 57%, which represents a statistically 

significant increase in predictive value. 
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Figure 71 DTI reconstruction of right-hemispheric perisylvian language network 

The top panel depicts the DTI reconstruction of the right hemispheric arcuate fasciculus in 
three left hemispheric stroke patients. The anterior segment (green) and the posterior 
segment (yellow) can be appreciated in all three patients. The long segment (red) 
connecting homologues of the perisylvian language areas is, however, missing in the first 
patient, slightly represented in the second and very prominent in the third patient. The lower 
left panel shows the regression plot for aphasia recovery and the standardized residuals for 
the right normalised long segment volume corrected for the regressors age, gender, and 
lesion size. The right lower panel shows the correlation plot for aphasia recovery at six 
months follow-up and the volume of the right long segment. 

 

8.6.3 Indices of microstructure analyses  

8.6.3.1 Trace or Mean diffusivity (MD) 

Six months post onset, phonological fluency correlated with the mean diffusivity of 

the right anterior segment (r=–.52, p=.047). None of these correlations, however, 

survived multiple comparison with the adjusted p value p=.004. 

A partial correlation between the overall aphasia score at follow-up correlated highly 

significantly with the mean diffusivity of the anterior segment in both hemispheres 

(r=.729, p=.040; r=.764, p=.027, two-tailed). These relations were further 

investigated in more detail using regression analyses. 
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8.6.3.2 Diffusivity along ellipsoidal axes (radial and axial diffusivity) 

At six months post onset, no correlations were obtained between the initial 

perpendicular diffusivity in the three segments and the language assessments. 

Independent t-test analyses between the sexes as well as between the thrombolysis 

groups revealed no differences in axial diffusivity in any of the segments. At six 

months post onset, no correlations were found between the initial axial diffusivity 

and the language assessments. 

 

8.6.3.3 Fractional Anisotropy (FA) 

Six months post onset, spontaneous speech marginally correlated with the 

fractional anisotropy of the left anterior segment (r=–.55, p=.054). Comprehension 

correlated with the FA of the left posterior segment (r=.61, p=.013). Phonologic 

fluency correlated marginally with the left long segment (r=.53, p=.052). None of 

these correlations, however, survived multiple comparison with the adjusted p value 

p=.0041. 

 

8.7 TBSS 

A TBSS analysis was conducted between the aphasia severity at six months as the 

dependent variable and the fractional anisotropy maps from the baseline scanning 

assessment. Age, gender, thrombolysis treatment, and lesion size were added as 

covariates to this analysis. The results indicated that reduced FA in the left temporal 

stem, temporal lobe and inferior frontal gyrus white matter is associated with poor 

recovery, whilst increased FA in the right middle frontal gyrus, the junction of the 

anterior limb of the internal capsule and the external/extreme capsules, cingulate 

gyrus, and parietal lobe seem to predict better recovery (Figure 72).  
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Figure 72 TBSS analysis of baseline FA values and longitudinal language recovery 

Blue voxels represent areas of reduced fractional anisotropy (FA) values significantly 
associate with poor recovery; red voxels represent areas of increased fractional anisotropy 
(FA) values significantly associate with better recovery after six months. Contrasts are 
controlled for age, sex, thrombolysis, and lesion size (uncorrected for multiple corrections) 
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CHAPTER 9 CHRONIC ASSESSMENT (12 MONTHS) 

This chapter is dedicated to the comparison between baseline and chronic 

neuroimaging data in relation to aphasia severity. 

At one year, the WAB-R screening was repeated together with a repeat MRI scan 

utilising the same scanning protocol and equipment used for the first scan. 

One year after symptom onset, none of the eighteen patients had died. Two 

patients relocated (Jamaica and Cheshire), two patients withdrew six months after 

onset, and one patient was hospitalised for another medical conditions. For three 

patients the one-year scan was not performed as this was outside the study 

collection period. Hence, a total of 10 complete datasets of one-year neuroimaging 

assessments were available (mean 408±47 days after symptom onset). 

Out of those 10 first-ever stroke patients, nine (90%) were still aphasic to a varying 

degree. One patient was assessed to have Wernicke aphasia (patient 07), one 

patient was classified as transcortical motor aphasia (patient 10) and the remaining 

seven patients were categorised anomic (patient 03-06,08-09,15). One patient fully 

recovered (patient 13).  

The chronic structural MR images can be seen in Figure 73Error! Reference 

source not found. and the connectional anatomy is available in Figure 76. 
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Figure 73 Native structural scans of patients assessed at the chronic stage 

MRI contrasts shown are T1, T2, and T2 FLAIR. Red asterix indicates the stroke lesion. One 
patient (06B) has no asterix indicating the lesioned area in any of the contrast, as the stroke 
was not evident on conventional MR contrasts. In this subject, the hyperintense lesions on 
the T2-weighted images were deemed to be periventricular small vessel disease by a 
radiologist. 

9.1 Lesion analysis 

Lesion analysis was performed on the one year scans. The ROIs of the lesions 

were manually drawn on the native scans and then normalised to the MNI template. 

As seen above ten scans were available. However, only nine were used for lesion 

analysis, as the lesion in subject 06 was not identifiable on classical structural 

scans. (Note: Automatic lesion segmentation was also attempted with an SPM 

toolbox called automatic lesion identification ‘ALI’ (Seghier et al. 2008), which also 

failed to identify a lesion).  
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One can appreciate from the lesion overlay map in Figure 74 that, in the chronic 

stages, the lesions were affecting all perisylvian regions. These include i) the 

superior temporal lobe (including Heschl’s gyrus), ii) the inferior and middle frontal 

gyri, and to a minor extent the superior frontal gyrus, iii) deep brain nuclei (i.e. 

putamen, anterior caudate nucleus), iv) the three capsules (i.e. posterior arm of the 

internal capsule, external/extreme capsules), v) claustrum, and vi) the entire insular 

ribbon. The maximum overlay is located on the posterior short insular gyrus/anterior 

long insular gyrus, extending anterior-posteriorly along the insular ribbon between 

the middle short insular gyrus and the inferior periinsular sulcus, and medio-laterally 

between the insular ribbon and posterior globus pallidus (engulfing the extreme 

capsule, claustrum, external capsule, and putamen). Insular anatomic labelling is in 

accordance with Türe et al. (1999). 

 

Figure 74 Percentage overlay map of chronic (12 months post onset) left-
hemispheric lesions (n=9) 

A Kolmogorov-Smirnov (K-S) test indicated that within this subsample of nine 

patients, lesion volume at baseline and one-year can be considered normally 

distributed (chronic: K-S Z=.673, p=.76; baseline: K-S Z=.823, p=.51). Paired 

parametric comparison between the baseline lesions and the chronic lesion 

volumes of this subgroup of nine patients, did not reveal a significant change in 

lesion size (t(8)=–0.377, p=.72) over the duration of one year. The mean 

comparison however indicates a slight reduction in lesion size over time: baseline 

lesion size was, on average, 20160 (±24937) voxels (equal to 279±344 ml)14 

compared to the average chronic size of 16365 (±15403) voxels (equal to 226±213 

ml).  

                                                
14 Lesion volume was calculated according to the equation below. Lesion volume=nr 
of lesioned voxels*volume of one voxel. Volume of one voxel can be calculated 
through the voxel size 2.4x2.4x2.4 (mm3) and was then convert to millilitre (ml). 
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Given the small number of observations, further symptom-lesion mapping (i.e. 

regression analyses) was not attempted due to the likelihood of over-fitting the data. 

 

9.2 DTI Results 

9.2.1 DTI Atlas-based analysis 

As a first step the aforementioned atlas (www.natbrainlab.com) was used to overlay 

the chronic lesion maps onto. This analysis identified that, in the chronic stage, four 

left-hemispheric pathways were affected, namely the inferior fronto-occipital 

fasciculus, the anterior commissure, the internal capsule and all three segments of 

the arcuate fasciculus (Figure 64A). 

 

Figure 75 DTI Atlas overlay on chronic left-hemispheric lesion overlay percentage 
maps (n=9) 

Panel A depicts the overlay of pathways affected by the chronic lesions. Panel B shows 
pathways that were not affected. The colour coding of pathways is in accordance with the 
directional FA-colour coding (red=commissures, green= association, blue=projections). The 
cingulum is represented in two parts as it is an arching tract and hence from a dorsal axial 
perspective the tract separates into two parts. Similarly, the fornix separates into its fimbria, 
and thus appears like a three-part structure from the dorsal axial view. iFOF, inferior fronto-
occipital fasciculus; AS, anterior segment; PS, posterior segment; LS, long segment; ILF, 
inferior chronic fasciculus. Where tracts cannot be appreciated on the lesioned hemisphere 
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they are shown on the right hemisphere for reference (internal capsule and arcuate 
segments). 

The corpus callosum (Figure 64B) is shown amongst the non-affected pathways, 

however, it should be considered that a DTI atlas was used here and therefore 

cortical projections of the corpus callosum cannot be visualised. Those cortical 

projections can however be considered as affected by the chronic lesions. This will 

be considered in more detail in Chapter 12. The dorsal and ventral (not shown here) 

parts of cingulum were not engulfed by the lesion at any point along their course; 

neither were the fornix (body and fimbria) and the inferior longitudinal fasciculus15.  

It can be assumed from the lesion location that the superior longitudinal fasciculi 

(SLF 1-3) were damaged as well, however, these are not reconstructable with DTI 

and no atlas is yet available online for overlay investigations (atlas in prep and will 

be available online www.natbrainlab.com). 

In comparison to the lesion-atlas overlay at baseline, four pathways are no longer 

considered affected by the lesion, namely the corpus callosum (regardless its lateral 

projections), the cingulum, the ILF, and the fornix. 

 

9.2.2 Perisylvian pathway reconstructions 

To investigate the chronic changes in the white matter anatomy the dissection of the 

three arcuate segments was attempted again after one year of symptom onset and 

compared to the baseline measurements. Likewise, volumetric measurements were 

obtained for each dissected pathway. 

Upon visual inspection, the dissections of the arcuate in the left hemisphere 

revealed substantial intra- and interindividual variability between the two time points 

(i.e. baseline vs. one-year post stroke). Obvious changes in the arcuate anatomy in 

the left and right hemisphere between the baseline and one-year dissections can be 

appreciated when comparing Figure 60 in subchapter 7.3 and Figure 76 in this 

chapter.  

                                                
15 The visualisation of axial slices does not demonstrate this fact nicely, however 
when all three planes (axial, sagittal, coronal) are available simultaneously, it is 
clear that those two tracts are unaffected. 



Part II. Experimental data  Chronic assessment (12 months) 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 254 

See overleaf. 
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Figure 76 Bilateral DTI arcuate fasciculus reconstructions in chronic stroke 

DTI tractography reconstructions show the anterior (green), posterior (yellow) and long 
segment (red) of the left and right arcuate fasciculus post stroke where dissection was 
possible. The arcuate is shown in the dorsal, left-lateralised, and right-lateralised view 
respectively (n=10). The background image shows the corresponding one-year native 
diffusion-weighted scan of each patient to facilitate the identification of the lesion and to 
identify whether the lesion is encroaching on the perisylvian pathways. 
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Beyond visual inspection, a paired t-test analysis revealed significant volumetric 

reduction in the posterior and long segment bilaterally, whilst the anterior segment 

did not seem to be affected (Table 29). 

 

Table 29 Paired t-test comparisons between baseline and one-year volumes of the 

three segments. 

  n Mean (SD) t df p 

Anterior segment left Baseline 10 425.20(310.15) 1.701 9 .123 

 1 year 10 247.60(224.26)    

Anterior segment right Baseline 10 580.30(163.76) 0.850 9 .417 

 1 year 10 520.30(186.97)    

Posterior segment left Baseline 10 612.30(259.30) 5.857 9 .000*** 

 1 year 10 224.40(241.58)    

Posterior segment right Baseline 10 573.50(236.83) 3.949 9 .003** 

 1 year 10 298.60(228.52)    

Long segment left Baseline 10 884.90(410.07) 4.708 9 .001*** 

 1 year 10 202.70(214.13)    

Long segment right Baseline 10 466.60(231.69) 3.898 9 .004** 

 1 year 10 271.80(199.23)    

*** Significant at .001 level 
**  Significant at .01 level 
 
 
When investigating the FA in all segments and both hemispheres, the FA is reduced 

in all segments; however, no significant changes can be detected apart for the long 

segment in the left hemisphere (Table 30). Here, a reduction in the mean FA across 

the entire length of the tract is apparent whilst the standard deviation (SD) is 

increased compared to the baseline measures. 
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Table 30 Paired t-test comparison between baseline and one-year fractional 
anisotropy (FA) changes in the three segments in both hemispheres. 

  n Mean (SD) t df p 

Anterior segment left Baseline 10 .33(.17) 0.959 9 .363 

 1 year 10 .29(.20)    

Anterior segment right Baseline 10 .46(.04) 1.206 9 .259 

 1 year 10 .43(.10)    

Posterior segment left Baseline 10 .36(.05) 1.434 9 .185 

 1 year 10 .28(.20)    

Posterior segment right Baseline 10 .41(.04) 1.481 9 .173 

 1 year 10 .36(.14)    

Long segment left Baseline 10 .42(.04) 2.565 9 .030* 

 1 year 10 .24(.22)    

Long segment right Baseline 10 .45(.16) 1.467 9 .176 

 1 year 10 .37(.21)    

* Significant at .05 level 

 

9.3 Tract-based Spatial Statistics (TBSS) Results 

FA maps were pre-processed, as described in the Chapter 6, and submitted to a 

general linear model (GLM) analysis. Here, chronic FA changes (i.e. from the 

baseline scan to the one-year scan) were investigated. The difference between 

those two FA maps was calculated and the resulting subtraction map was analysed 

with regards to its predictive value for language recovery. 

The aim was to analyse whether chronic FA changes might reflect behavioural 

changes (e.g., improved language function). Nine data sets were entered into the 

analysis. 

For the GLM TBSS analysis, contrast 1 gives chronic>acute test (i.e. increase in FA 

over time) and contrast 2 the chronic<acute test (i.e. decrease in FA over time), as 

fully corrected for multiple comparison across space results. 

The results for contrast 1 indicate that an increase in FA is primarily seen for the 

white matter of the right hemisphere (Figure 77). This increase is predictive of 

chronic aphasia severity with an increase in FA reflecting an improvement in the 

aphasia score (i.e. less severe). 

An increase in FA is primarily detected within the white matter of the right 

hemisphere across all lobes (frontal, parietal and temporal) as well as in the 

sublobar commissural and projection white matter [i.e. corpus callosum (including 
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bilateral forceps minor), cortical spinal tract, corona radiata, and external/extreme 

capsules]. 

For contrast 2, no association between decreased FA and aphasia severity were 

observed. This lack of significance might reflect the variety in stroke lesions and 

different evolution of structural brain recovery. 

Both contrasts are controlled for the influence of the following confounding 

variables: age, sex, thrombolysis, and lesion size. The influence of age on FA 

changes over life span haven been previously acknowledged (Pfefferbaum et al. 

2000). The results are further corrected for multiple comparisons. 

 

Figure 77 TBSS GLM analysis for chronic data, contrast 1 

Red regions indicate areas where an increased FA positively correlated with improvements 
in language performance. This figure shows the result of contrast 1 (chronic>acute FA) 
corrected for multiple comparisons thresholded to p<0.05 in MNI space. An increase of FA is 
evident in the white matter of the right hemisphere, including the temporal, parietal and 
frontal lobes, and the corpus callosum and cortical-spinal tract at the level of the medulla 
oblongata.  

9.4 Continuous arterial spin labelling analysis 

Perfusion data from 13 patients were available (Figure 78). Global perfusion values 

were extracted for each hemisphere in parallel with perfusion measures within the 

cortical language areas. 
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Figure 78 Grey matter thresholded (30%) normalised perfusion maps at baseline for 13 
patients of our cohort shown in neurological view. 

 

The first aim was to investigate if the left-hemispheric post-stroke perfusion can 

predict the language deficits at baseline or after six months. To this end, global 

perfusion measures within the left hemisphere of each patient (see table 2) were 

entered into a Pearson correlation analysis, after establishing that none of the 

measurements are significantly different from the normal distribution. This 

parametric analysis revealed no association between global left hemisphere 

perfusion post-stroke and baseline aphasia severity (r(13)= –0.211, p=0.489) or 

longitudinal aphasia severity (r(11)= –0.059, p=0.863). This suggests that the 

overall perfusion post-stroke is not predictive of the severity of aphasia. 

The second aim was to replicate, if possible, results previously shown in the 

literature by Hillis et al., 2006. The authors of this study reported that hypoperfusion 

within Wernicke’s was associated with initial comprehension deficits. Similarly, it 

was of interest if post-stroke perfusion within Broca’s area might be associated with 

impaired articulation functions. To test this hypothesis perfusion within language 

ROIs was extracted and correlated with the four scaled composite subscale scores. 

The rationale for using these scores is that spontaneous speech and naming should 

tap into the articulatory functions assumed to involve Broca’s region, whereas 

comprehension should be mediated via Wernicke’s area. Repetition deficits have 

classically been ascribed to a lesion along the connection of both areas and will 

therefore be investigated in relation to both ROIs. Previous studies have 
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concentrated on left hemispheric perfusion. The same will be done here, however, 

the data for the right hemisphere is also shown for completeness (Table 31). 

Perfusion within Broca’s region did not yield a significant association with the scaled 

composite subscale score for spontaneous speech (BA44: r(11)= –0.108, p=0.752; 

BA45: r(11)= –0.162, p=0.634). Similarly, this cortical region was not associated 

with naming deficits (BA44: r(11)= –0.159, p=0.640; BA45: r(11)= –0.170, p=0.618). 

Similarly, perfusion with the superior temporal lobe was not correlated with 

comprehension deficits (STG_Te10: r(11)= 0.154, p=0.651; STG_Te11: r(11)= 

0.237, p=0.482; STG_Te3: r(11)=0.119, p=0.728). Repetition deficits were not 

associated with perfusion measures in either frontal or temporal regions in our 

cohort (STG_Te10: r(11)= –0.028, p=0.936; STG_Te11: r(11)= 0.058, p=0.866; 

STG_Te3: r(11)=–0.026, p=0.941; BA44: r(11)= –0.130, p=0.704; BA45: r(11)= –

0.130, p=0.704). 

In conclusion, it was not possible to replicate the previously described finding of a 

hypoperfusion within Wernicke’s area being predictive of the severity of word 

comprehension impairments. This discrepancy might be due to different 

methodological approaches in relation to the imaging methodology (i.e., exogenous 

vs. endogenous tracer), diverging perfusion measurements (i.e., relative delay in 

perfusion vs. average perfusion within ROI), different language assessments (non-

standardised assessment vs. standardised battery), and sample size. Further 

considerations will be detailed in the discussion. 

 

Table 31 Perfusion measures at baseline stratified by hemisphere. Values represent 
measures extracted from within cortical language regions of interest (ROI) and the global 
mean perfusion within each hemisphere. The underlying perfusion map was the 30% grey 
matter thresholded smoothed normalised cerebral blood flow map. All measurements 
represent ml/100gm of tissue/min. 

 

!!ID BA44 BA45 IPL_PF IPL_PFcm IPL_PGa STG_Te10 STG_Te11 STG_Te3 GLOBAL BA44 BA45 IPL_PF IPL_PFcm IPL_PGa STG_Te10 STG_Te11 STG_Te3 GLOBAL
3 23.20 18.32 12.18 24.99 11.22 38.20 36.49 17.09 286.39 20.83 19.18 13.75 26.30 16.96 34.11 35.97 20.45 199.65
4 21.69 16.11 10.52 27.10 8.94 61.93 49.92 18.34 224.86 20.83 19.18 13.75 26.30 16.96 34.11 35.97 20.45 199.65
5 42.67 27.31 22.32 53.07 26.06 82.46 67.62 37.27 364.31 29.77 24.85 16.64 37.64 18.99 45.92 46.22 19.77 270.11
7 27.65 19.39 13.48 27.91 17.28 28.68 15.42 17.19 254.70 33.23 25.34 15.45 35.13 19.65 41.36 37.36 24.67 269.91
8 21.07 17.39 13.09 23.73 8.56 29.55 29.57 19.34 235.91 28.91 26.46 19.47 32.42 24.61 34.66 31.99 21.75 255.52
9 15.53 15.45 4.15 7.44 11.65 7.51 6.82 12.94 210.39 29.77 24.21 15.39 28.89 18.08 37.82 36.00 20.48 254.08
10 9.29 11.26 4.46 6.39 6.83 6.39 8.39 5.41 197.85 28.34 21.44 14.03 29.84 15.53 39.76 36.41 18.96 227.68
13 27.79 24.72 12.65 26.75 17.30 29.72 29.66 14.02 271.93 34.06 29.40 18.49 35.11 23.68 40.69 38.52 22.16 277.61
14 11.89 6.42 9.52 20.04 11.27 18.48 19.24 6.87 144.24 9.54 7.21 7.81 13.85 9.10 20.15 20.69 10.35 126.01
15 22.16 16.47 5.55 18.62 10.67 38.60 28.86 19.32 260.81 40.79 33.49 25.35 47.77 27.05 49.86 46.02 28.70 339.92
16 18.72 13.53 8.32 22.21 6.32 34.48 31.55 16.38 176.84 20.69 13.49 11.76 25.45 10.94 31.12 32.94 15.40 185.81
18 50.26 36.21 20.01 36.81 28.13 48.18 43.32 28.74 385.08 37.35 32.23 22.36 43.70 28.26 50.22 48.27 28.27 349.57
19 25.10 17.28 18.98 38.63 20.09 38.07 31.50 20.34 257.67 26.73 18.92 16.03 36.84 18.50 38.29 37.80 19.18 235.87

Min! 9.29 6.42 4.15 6.39 6.32 6.39 6.82 5.41 144.24 9.54 7.21 7.81 13.85 9.10 20.15 20.69 10.35 126.01
Max! 50.26 36.21 22.32 53.07 28.13 82.46 67.62 37.27 385.08 40.79 33.49 25.35 47.77 28.26 50.22 48.27 28.70 349.57
Mean! 24.39 18.45 11.94 25.67 14.18 35.56 30.64 17.94 251.61 27.76 22.72 16.18 32.25 19.10 38.31 37.24 20.82 245.49

Left!Hemisphere Right!Hemisphere
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CHAPTER 10 SUPPLEMENTARY ANALYSIS (DTI AND SD) 

‘Once we accept our limits, we go beyond them’ 

(Albert Einstein) 

 

The present study focussed on the relationship of the arcuate fasciculus and post 

stroke language recovery using diffusion tensor tractography. However, as 

discussed in the introduction to this dissertation, the arcuate fasciculus might not be 

the only pathway in the human brain that is involved in language processes. To 

account for the possibility that the inferior fronto-occipital fasciculus (iFOF) might be 

involved in language functions, especially semantic processing as suggested by 

Duffau et al. (2005), this fibre system was dissected and anatomical-functional 

correlations were computed.  

Contemporary diffusion imaging methodology has some limitations (see subchapter 

5.3.3). To overcome some of these restrictions and to be able to dissect a pathway, 

that is thought to be relevant for all motor aspects of language, an additional pre-

processing with spherical deconvolution was conducted and the frontal aslant tract 

(FAT) was dissected.  

Some of the findings presented in this chapter still await validation in patient cohorts 

and/or comparison data from healthy volunteers. Where comparison measures are 

available, they will be mentioned in the chapter. 

 

10.1 Diffusion tensor imaging (DTI) analyses of the iFOF 

The ventral system was dissected in the previously described patient sample. In 

patients where the lesion encompassed the external/extreme capsules, the inferior 

fronto-occipital fasciculus (iFOF) could only be partially dissected (for example in 

patient 18; Figure 80). For subject 14 the iFOF was not dissected, as the DTI did 

not reveal any connections between the frontal and the occipital lobes. This might 

be due to the incomplete data acquisition for this patient as discussed in Chapter 6. 

After the dissections were obtained, tract specific measurements, namely the tract 

volume (number of voxels) and the fractional anisotropy for each pathway, were 

extracted and entered into our statistical analyses.  
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For both measures a highly significant right-ward asymmetry was observed, 

indicating that the tract is bigger in the right hemisphere (to be expected given the 

presence of a lesion in the left) and that the fractional anisotropy is higher in the 

right hemisphere (to be expected given that the integrity of the pathway might be 

altered in the left hemisphere) (Figure 79, Figure 80). 

 

 

Figure 79 Laterality indices (volume and FA) of the iFOF 

!0.5% !0.4% !0.3% !0.2% !0.1% 0% 0.1% 0.2% 0.3% 0.4% 0.5%

Lateralisation index (LI) Right lateralisedLeft lateralised

iFOF volume

iFOF FA

* *

* *
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Figure 80 Bilateral inferior fronto-occipital fasciculus (iFOF)  

This figure shows the DTI reconstructions of the iFOF in the presented stroke cohort 
overlaid on each patient’s native diffusion-weighted image. The red asterix indicates the 
location of the lesions. The bottom right shows the dorsal view for patient 18 and 19 to better 
demonstrate the impact the lesion had on the pathway. 
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For comparison, the MNI-normalised anatomy of the inferior fronto-occipital 

fasciculus as seen in a healthy cohort is shown in Figure 81. The figure depicts the 

superior and inferior fronto-occipital fasciculus as obtained with spherical 

deconvolution tractography. The top panel shows an MNI-normalised three 

dimensional reconstruction of the pathways and the lower panel shows the 

percentage overlay maps where it can be appreciated that the iFOF has a 

consistent trajectory along its entire course and across subjects (for details please 

see the original publication). In the healthy population, the iFOF is right lateralised 

for number of streamlines (significantly) and for tract volume (not significantly); 

fractional anisotropy, however, is not significantly lateralised (Thiebaut de Schotten, 

ffytche, et al. 2011b). Hence, the highly significant right-lateralised asymmetry in 

fractional anisotropy in this stroke sample is either due to decreased left 

hemispheric FA or increased right hemispheric FA. Given the presence of a lesion 

in the left hemisphere in this stroke cohort, it seems more likely, however, that 

decreased left hemispheric FA values are driving this significant observation.  

 

Figure 81 SD reconstruction of the superior fronto-occipital fasciculus (sFOF) and 
inferior fronto-occipital fasciculus (iFOF) in a healthy cohort as published in Forkel et al. 
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(2012) A 3D reconstruction of the normalised trajectory of the sFOF and iFOF. MNI 
coordinates are in correspondence with the MNI slices shown in panel B. B MNI-normalised 
overlay percentage maps of the sFOF (upper panel B, MNI 56-16) and the iFOF (lower 
panel B, MNI 24 to –16). 

Despite earlier reports treating fractional anisotropy as non-Gaussian (Jones et al. 

2005), all measures in our sample are normally distributed (Table 32). 

 

Table 32 Test of normality of the IFOF tract specific measurements 

 Fractional anisotropy Volume (no of voxels) 
 Left Right Left Right 
n 17 17 17 17 

Normal Parametersa,b Mean .4456 .4877 989.8235 1544.4706 
SD .03855 .03322 465.02046 330.44707 

Most Extreme Differences 
     
Positive .074 .104 .129 .125 
Negative -.097 -.081 -.147 -.110 

Kolmogorov-Smirnov Z .402 .430 .608 .514 
a. Test distribution is Normal. 
b. Calculated from data. 
SD, standard deviation 
 

The volume as well as the fractional anisotropy was significantly higher in the right 

hemisphere relative to the left hemisphere (Table 32 and Table 33).  

 

Table 33 iFOF volume and fractional anisotropy in both hemispheres in the acute 
stage. 

Inferior fronto-occipital 
fasciculus 

 n Mean (SD) t(paired) df p 

Volume  Left 17 989.82(465.02) -4.309 16 .001 

 Right 17 1544.47(330.45)    

Fractional anisotropy Left 17 .4456(.03855) –3.673 16 .002 

 Right 17 .4877(.03322)    

 

When investigating the association between the overall language performance 

indices from the WAB-R at baseline and after six months with the iFOF tract 

measurements, it can be observed that fractional anisotropy in the left hemisphere 

is correlated with the baseline severity of aphasia (r(17)=.522, p=.032). The right FA 

had a tendency to significance when correlated with baseline severity (r(17)=–.44, 

p=.076). The iFOF volume was not associated with severity at follow-up (left: 
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r(17)=–.012, p=.963; right: r(17)=.046, p=.860). At follow-up, fractional anisotropy 

was no longer correlated with the longitudinal severity of aphasia (left: r(16)=.330, 

p=.213; right: r(16)=–.036, p=.895). Tract volume was not associated with 

longitudinal severity (left: r(16)=–.015, p=.955; right: r(16)=.105, p=.70). 

 

As discussed in the introduction (Chapter 3), the iFOF is hypothesised to be 

important for semantic language processes. As a surrogate language index from the 

WAB-R, I used semantic categorical word fluency (animals) to test for association 

with the inferior fronto-occipital fasciculus. At baseline, only the FA of the right iFOF 

correlated with the number of animals generated in one minute (r(15)=–.535, 

p=.04). At follow-up none of the iFOF measures were significantly associated with 

semantic fluency (Table 34).  

 

Table 34 Correlation between semantic word fluency and tract specific 
measurements of the iFOF. 

Inferior fronto-occipital fasciculus   n r p 

Volume  Baseline Left 15 –.105 .709 

  Right 15 –.020 .942 

 6 months Left 16 .069 .799 

  Right 16 .043 .875 

Fractional anisotropy Baseline Left 15 .499 .058 

  Right 15 –.535 .040* 

 6 months Left 17 .474 .064 

  Right 17 –.195 .470 

* Significant at the 0.05 level 

 

It should, however, be noted here again that the semantic category word fluency 

task of the WAB has been previously criticised and its shortcomings have been 

discussed in the introduction to this dissertation (subchapter 2.2.3 and also Norman 

1988). 

 

The WAB-R subscales were further entered into a correlation analysis. For the 

baseline, the following associations were observed. Grammar and phonemic 

fluency (FAS words) were negatively correlated with the FA of the right iFOF 
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(grammar: r(16)=–.684, p=.004; FAS: r(12)=–.612, p=.035). This implies that the 

lower the FA in the right iFOF the better the grammar and phonemic fluency. 

Naming was marginally associated with the FA in the left iFOF (r(16)=.481, p=.06). 

For the longitudinal assessment, all WAB-R subscales were tested against the iFOF 

measures and only single-word based object naming was positively correlated with 

the FA in the left iFOF (r(16)=.633, p=.008), indicating that the higher the FA of the 

left iFOF the better the object naming performance on the WAB.  

 

10.2 Spherical deconvolution (SD) analysis of the FAT 

This study benefitted from the use of contemporary diffusion imaging methodology. 

However, several limitations should also be acknowledged. Current DTI algorithms 

are prone to implicit limitations, including generating the presence of false positives 

(i.e. non-existing tracts) and false negatives (i.e. absence of truly existing tracts). 

These limitations have to be considered with caution, especially when endeavouring 

to extract quantitative measures within the lesioned hemisphere.  

To address some of these shortcomings but also to take into account pathways that 

cannot be dissected using DTI, the present study was supplemented with an 

additional spherical deconvolution analysis that can partially overcome some of the 

abovementioned limitations whilst allowing us to investigate additional pathways 

that cannot be dissected using more conventional DTI in regions of high fibre 

density (i.e. fibre crossings >2). The in-house software StarTrack was used to 

conduct this analysis (for more details please refer to Chapter 6).  

One tract that is particularly difficult to dissect with diffusion tensor imaging 

algorithms is the frontal aslant tract (FAT). In the healthy population, the FAT 

interconnects anterior supplementary and pre-supplementary motor areas (pre-

SMA) of the superior frontal gyrus and the pars opercularis of the inferior frontal 

gyrus. This results in a lateral to medial trajectory of the pathway as can be seen in 

Figure 82D. Given its specific position in the frontal lobe, the FAT is located in an 

area of complex white matter anatomy. Here, various fibre populations are present 

including the medial and lateral projections of the corpus callosum, cortico-spinal 

tract, arcuate fasciculus, superior longitudinal fasciculus as well as other intralobar 

and cortical u-shaped fibres. Given this rich anatomy, reconstructing the FAT using 

conventional DTI is most difficult and for this purpose spherical deconvolution was 

implemented here. It can be seen in Figure 82E (yellow pathway) that the FAT is 

significantly left lateralised in the healthy population. 
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Figure 82 Anatomy and laterality of the frontal aslant tract 

Anatomy (A–D) and lateralisation (E) of the frontal aslant tract (FAT) here shown in yellow. 
The figure above is shown in radiological view. Taken from (Catani, Dell'Acqua, Vergani, et 
al. 2012b). 

In the present study, the frontal aslant tract was bilaterally dissected in all stroke 

patients available for this analysis (n=17). Paired t-test analysis showed that the 

volume of the FAT, measured as voxel count and track count, was found to be 

significantly left lateralised (no of voxel: t(16)=3.486, p=0.003; track count: t(16)=2.166, 

p=0.046). A laterality index (LI) was calculated based on the volume (voxel and tract 

count) grounded on the previously described formula (Right-Left/Left+Right). This 

aligns all subjects between the values of -1 and 1, where negative values indicate a 

left lateralisation. Figure 83 shows the LI plot for voxel and track count lateralisation 

of the frontal aslant tract; both indices are left lateralised as described in the text. 

This lateralisation pattern is in line with the previous report for healthy volunteers 

(Figure 82).  

E
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Figure 83 Lateralisation Index (LI) frontal aslant tract (FAT) with 95% confidence 
interval 

At baseline, the FAT LI for track count had a tendency to significance when 

correlated with the overall baseline severity of aphasia (r(17)=–.423, p=.09) and a 

significant association was observed with word repetition (r(17)= -.678, p=0.003). 

No other significant correlations with subscales (i.e. naming, semantic and 

phonemic fluency, comprehension) were observed at baseline or after six months 

post onset. 

 

Figure 84 Scatterplot of volumetric laterality of the frontal aslant tract (FAT) against 
the repetition score at baseline 

Given the observed correlation with repetition, this relationship was further 

investigated. For this, the sample was divided (median split) into high and low 
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performers on the repetition scale. When comparing the high and low performers on 

the repetition task at baseline, the high performers had a marginally significant 

larger FAT in the left hemisphere (Table 35). No differences were found for the right 

hemispheric FAT between the two groups (Table 35). 

 

Table 35 Differences for high and low performer on the repetition scale in relation 
to the volume of the frontal aslant tract (FAT). 

FAT volume  
(track count) 

Repetition  
(median split at 34) 

n Mean (SD) t df p 

Left Low performer 9 181.11(97.16) –2.028 15 0.06 

 High performer 8 274.75(92.50)    

Right Low performer 9 166.00(110.40) .768 15 .768 

 High performer 8 148.13(135.44)    

 

In conclusion, this supplementary analyses demonstrated that the iFOF, as part of 

the ventral system, is strongly right lateralised in our sample. The FA of the left 

iFOF is positively correlated with the overall aphasia severity at baseline (i.e. better 

left FA less severe aphasia). The FA of the right iFOF is negatively correlated with 

semantic fluency, grammar, and phonemic fluency (i.e. higher right FA worse 

performance on the tasks). After six months, the FA of the left iFOF positively 

correlated with naming (i.e. better left FA better naming). Overall, it appears from 

this that higher FA of the right iFOF is less beneficial whereas higher FA values for 

the left iFOF are beneficial for language performance. How these measures related 

to the performance in healthy volunteers still awaits investigation. 

Further, the frontal aslant tract was dissected in all patients and was strongly left 

lateralised as can be expected from the literature. The laterality of the FAT also 

correlated with repetition, indicating that the more left lateralised the FAT is the 

better the baseline repetition performance. 
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CHAPTER 11 CASE REPORTS (THREE PATIENTS) 

‘Neurology is learning stroke case by case’ 

(Anonymous) 

 

Given the richness of the presented data set and the very complex nature of 

language impairments, it is worth looking at some patients on an individual basis. 

Even though group-level comparisons are important and pivotal for predicative 

analyses, some information is lost when pooling the data (Fedorenko & Kanwisher 

2009; Steinmetz & Seitz 1991; Démonet et al. 2004). Hence, some of the patients 

within the sample discussed so far will be individually presented here and their 

deficits will be investigated in sight of the underlying anatomy.  

A detailed patients’ medical history (since admission to the HASU) will be given and 

the available imaging will be used to demonstrate the lesion and allude to possible 

compensation routes that would still allow the patients to perform the language 

functions they maintained or later regained. Within the current work, these 

compensatory routes are not provable but are the most likely routes according to 

my knowledge and in agreement with the literature. 
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11.1 Case report 1 (patient 01)  

Case history 

[4 Nov 2009] 87-year-old right-handed lady admitted to the 

hyperacute stroke unit at King’s College London with a first-ever 

unilateral cardio-embolic stroke. On admission, her clinical 

examination yielded a Glasgow Coma Scale (GCS) score of 14, 

NIHSS score of 4 due to global aphasia and lack of orientation. 

The patient is an English native speaker with no previous 

medical history in neurology and/or psychiatry. She was 

thrombolysed within 35 minutes of arrival at the Accident and 

emergency department department. Post-thrombolysis the 

patient developed a thalamic haemorrhagic transformation. All 

language assessments were obtained post thrombolysis.  

On admission, the stroke specialist in charge classified her as 

globally aphasic. 

[7 Nov 2009] At the screening she presented with auditory 

verbal comprehension deficits (5/10), was not able to follow 

sequential commands (3/10), and slightly impaired repetition 

(6/10). 

[12 Nov 2009] The baseline assessment identified a left-right 

confusion (though intact finger recognition), impaired repetition 

(76/100), impairments in sequential commands (41/80), naming 

and word finding difficulties (51/60), reduced semantic-

categorical word fluency (4/20), and reduced spontaneous 

speech (16/20). The baseline assessment also included a 

memory assessment that identified working memory 

impairments on the spatial (forwards: 2/16, backwards: 1/14; 

age-corrected) and digit spans (forwards: 7/16, backwards: 

1/14; age-corrected).  

[1 April 2010] Six months post symptom onset, her naming was 

perfect with still reduced word fluency (15/20) and high-level 

impairments for repetition (84/100). The overall aphasia quotient 

was 95.2, and was hence classified as recovered. 
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On structural imaging a posterior thalamic lesion including the middle geniculate 

nucleus (MGN) was evident. The left MGN is primarily connected to the auditory 

cortex and the posterior thalamus is connected to the superior temporal and the 

inferior parietal cortices (Figure 85). 

The conundrum here was that the patient initially presented with global aphasia and 

later Wernicke-type aphasia with a rather discrete lesion not affecting the convexity 

of the brain.  

 

Figure 85 Thalamo-cortical connections and density of the interhemispheric 
connections 

This figure shows the thalamo-cortical connections of language areas (BA22,40,39,44,45) 
and their interhemispheric connections. For the callosal connections, bright areas represent 
the areas that are less connected though the corpus callosum and dark areas are strongly 
connected. It can be seen that the language areas tend to be less connected compared to 
other cortical regions. Thalamic nuclei in the figure: A, anterior group; LGN, lateral 
geniculate nucleus; LD, laterodorsal; LP, lateroposterior; MD, mediodorsal; MGN, medial 
geniculate nucleus; Mid, midline; Pul, pulvinar; VA, ventral anterior; VLa, ventral lateral 
anterior; VLm, ventral lateral medial; VLp, ventral lateral posterior; VPi, ventral posterior 
inferior; VPl, ventral posterior lateral; VPm, ventral posterior medial; IN, intralaminar nuclei; 
CM, centromedian nucleus. Nomenclature based on (Morel et al. 1997). (Courtesy of Prof. 
Katrin Amunts and Dr. Marco Catani, in press). 

However, when looking at the diffusion-weighted imaging a larger lesion, engulfing 

the arcuate fasciculus, can be appreciated (Figure 86). This demonstrates nicely 

the previously reported advantage that DWI can have over conventional imaging, 

especially in the acute stages of stroke.  

The lesion, as seen on DWI, is impacting on the left arcuate fasciculus and might 

partially explain the patient’s repetition deficits at the screening and baseline 
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assessment. Additionally, the lesion has damaged the middle geniculate nucleus of 

the auditory thalamus. This part of the thalamus is connected to the auditory cortex 

via projection fibres. These projections fibres have been consistently demonstrated 

in the monkey (Mesulam & Pandya 1973; Rauschecker et al. 1997) and the human 

brain using histological methods (Rademacher et al. 2002; Bürgel et al. 2006) and 

diffusion imaging (Behrens, Johansen-Berg, et al. 2003a; Berman et al. 2013). 

In this patient, the auditory thalamus and its cortical projections are 

damaged/disconnected, not allowing auditory input to be relayed for further 

processing. Also, the frontal aslant tract was not dissectible in the left hemisphere 

using DTI, showing that the white matter connections reaching Broca’s area (i.e. the 

arcuate fasciculus and the frontal aslant tract) were severely damaged. 

 

In conclusion, the core of the stroke lesion is centred on the posterior thalamus in 

the left hemisphere. Extended damaged was evident on diffusion-weighted imaging 

identifying disconnections to the white matter reaching Broca’s and Wernicke’s 

territories (Figure 87).  
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Figure 86 MRI contrasts for patient 01 and the bilateral arcuate anatomy 

The top panel shows the T1-weighted structural scan with the left thalamic lesion (indicated 
as asterix) in comparison to lesion extent as shown on the diffusion-weighted imaging. The 
bottom panel depicts the reconstruction of the arcuate fasciculus as a whole (upper panel) 
and split into three segments (lower panel). The above image visualises the arcuate 
fasciculus (dorsal, left-lateral and right-lateral views) with the fractional anisotropy mapped 
onto the pathway. Visualisation is overlaid onto the patient’s native diffusion-weighted 
image. The red asterix indicates the lesion. 

Nevertheless, this patient was able to repeat words and short sentences in the 

presence of word finding difficulties at baseline. If we assume that auditory input is 

processed via the right MGN, the input could then be further relayed to the 

Wernicke homologues region in the right hemisphere. From here, there is a 

possibility of two different routes. The first would be to pass the information on to 

the ipsilateral Broca homologue area and from there utilise interhemispheric 

connections (possibly the genu of the corpus callosum) to propagate the processed 

information towards the left-hemispheric Broca region to then produce the verbal 

output (Figure 87). 
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Another possibility would be to pass on the information from the right Wernicke area 

via posterior commissural pathways to the left-hemispheric Wernicke area; From 

there, other pathways than the arcuate (e.g., uncinate, iFOF) might allow for the 

information to travel to further processing areas (Figure 87). Naming, especially 

semantic naming, has been implicated to be mitigated along the ventral network 

including the uncinate (Papagno 2011; Papagno et al. 2011; Heide et al. 2013) and 

the iFOF (Duffau 2008). 

Damage to the auditory system for patient 01 and possible compensatory routes 

utilising the right hemispheric homologues areas and interhemispheric commissural 

pathways.  

 

 

Figure 87 Damage and possible compensation for patient 01 

11.2 Case report 2 (patient 02) 

Case history 

[8th November 2009] A 28-year-old right-handed man 

(electrician) was admitted to the HASU at King’s College 

Hospital with a first-ever unilateral stroke presenting with dense 

right-sided hemiplegia, right-sided sensory loss and inattention, 

receptive dysphasia and expressive aphasia and behavioural 

problems. Patient was not thrombolysed due to the lack of a 

clear time of onset. On the imaging, it can be appreciated that 

the patient had a lesion to the left frontal lobe extending from 

the pole to the level of the anterior thalamus, whilst 

encompassing all cortical and subcortical structures of the left 

frontal lobe (Figure 88A). The perisylvian white matter affected 
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included the arcuate fasciculus, uncinate fasciculus, iFOF, and 

FAT. 

[10th November 2009] On the initial screening, comprehension is 

variable but relatively good for simple commands (max. 2 

words). Patient was able to repeat his own name but no other 

words. Automatic speech (counting, days of the week) was 

possible after priming. Patient prefers non-verbal 

communication but is inconsistent with gestures. 

[16th November 2009] Unable to repeat letters but can repeat 

single words after semantic priming. No spontaneous speech. 

Auditory verbal comprehension intact for personal questions but 

not for abstract questions (45/60). Patient can follow two-stage 

commands inconsistently (35/80). Repetition good but with 

length effect (92/100). No object naming (1/60), no word fluency 

(1/20). 

[26th June 2010] The patient made a full functional recovery with 

word fluency problems that were more severe for phonemic 

fluency. Spontaneous speech OK. Auditory verbal 

comprehension intact (60/60). Patient can follow sequential 

commands (80/80). Repetition good (98/100). Object naming 

OK (53/60). Reduced semantic word fluency (10/20) and 

impaired phonemic fluency (2). 

At the time of reassessment he was on medication: 5mg Asprin 

(once a day), 40mg simvastatin (one a night), 4mg Perindopril 

(one a day), 200mg Dipyridamole (twice a day). 
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Figure 88 DWI Damage patient 02 and white matter connections 

Figure A depicts the DWI of patient 02 as axial slice with the schematic diagram of damaged 
and intact connections. B shows the damage to the uncinate fasciculus in the left 
hemisphere that has reduced volume compared to the right uncinate fasciculus. C shows 
the right hemispheric Perisylvian white matter of the same patient. 

In this patient, the uncinate fasciculus (connecting anterior temporal and inferior 

frontal cortices) is affected by the lesion and the left uncinate is hence reduced in 

volume (Figure 88B). This damage might account for the naming impairment in this 

patient. The first language function this patient recovered was the ability to repeat 

words. Given the size and location of his lesion this ability to repeat words is not 

likely to be performed by the left hemisphere but rather through the intact right 

hemisphere (Figure 88C). The potential of the right hemispheric homologues areas 

to perform repetition tasks has been previously shown with PET imaging (Ohyama 

et al. 1996). The right hemispheric pathways are not affected by the lesion apart 

from the lesion along the genu of the corpus callosum, which is likely to cause 

callosal degeneration in the right hemisphere. Also naming abilities after left-

hemispheric damage have been identified for the right hemisphere (Fridriksson et 

al. 2009). 

 

11.3 Case report 3 (patient 08) 

Case history 

[27th June 2010] A 43-year-old right-handed previously known 

hypotensive lady was admitted to the HASU at King’s College 
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Hospital with a first-ever unilateral stroke, presenting with dense 

right-sided hemiparesis, sensory loss, neglect, and dysphasia. 

On admission, her clinical examination yielded a GCS score of 

11 and an NIHSS score of 27. The patient was not 

thrombolysed (>5 hours). The clinical CT scan showed a 

striatocapsular infarct engulfing the left lentiform nucleus, 

posterior limb of the internal capsule, with extent into the corona 

(see Figure 89 for lesion on DWI).  

[29th June 2010] On the WAB-R screening, the patient was 

diagnosed with moderate transcortical motor dysphasia with 

reduced fluency (3/10), reduced spontaneous speech (6/10) and 

impaired naming (5/10). 

[30th June 2010] On the full assessment the patient was 

diagnosed with moderate Broca’s aphasia (AQ 58.6/100) with 

reduced semantic (2/20) and phonemic (0) fluency. Repetition 

was found to be extremely effortful (48/100) and only possible 

for single words. 

[29th December 2011] Patient presented without neglect but 

remaining spams in right upper limb and left neck. On the 

language assessment, she was classified as mild anomic 

(AQ=87.2). Semantic (18/20) and phonemic (31) fluency 

improved remarkably. Naming (60/60) and repetition (98/100) 

intact. Spontaneous speech was still marked by object 

omissions, hesitations and shortened phrase length and an 

overall effortful speech. The patient reports having developed 

obsessive-compulsive disorder subsequent to suffering the 

stroke. At the time of reassessment she was on medication: 

40mg fluoxetin-neuraxpharm (once a day), 2.5mg 

bendroflumethiazide (once a day), 75mg clopidogrel (once a 

day), 40mg simvastatin (one a night), 2.5mg ramapril (one a 

day), 10-20mg baclofen (three times a day). 
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Figure 89 DTI reconstruction of the arcuate fasciculus and the frontal aslant tract 
for patient 08  

DTI reconstruction of the three arcuate segments shown in dorsal, left-lateralised, and right-
lateralised view. The lesion on the left is bordering onto the medial aspects of the long 
segment but is not engulfing any of the segments. The coronal vies shows the dissection of 
the frontal aslant tract that is engulfed by the lesion in the left hemisphere. Visualisation is 
overlaid onto the patient’s native diffusion-weighted image. The red asterix indicates the 
stroke lesion. 

In this patient, the arcuate seemed unaffected, yet the FAT and the ventral 

pathways (uncinate fasciculus and iFOF) are affected by the lesion. The impact to 

the pathways connecting to the anterior temporal lobe might account for the object 

naming difficulties at baseline that later recovered as the lesion extend reduced. 

The core of the lesion is, however, encompassing the putamen, caudate, and 

thalamus, which might account for the word finding difficulties at baseline. The 

patient recovered her word finding capacity but her spontaneous speech was still 

marked by hesitancy, which might be explained by the interruption to the FAT 

(connecting Broca’s territory to the supplementary motor cortex) on the one hand 

and the disconnection of fronto-striatal connections on the other. Lesions to these 

dorsal view (arcuate fasciculus)

left sagittal view (arcuate fasciculus) right sagittal view (arcuate fasciculus)

coronal view (frontal aslant tract)
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subcortical structures have previously been implicated in aphasia (Mega & 

Alexander 1994; Jonas 1982; Nadeau & Crosson 1997; Cappa 1997; Alexander et 

al. 1987). 

 

In conclusion, the above patients demonstrate that diffusion imaging can be a 

pivotal tool to define the extent of damage cause by a stroke. Clinical CT scanning 

often underestimates the true lesion size and therefore lesion-symptom mapping 

might not be accurate. Using DTI, I was able to show that language deficits might 

be explained by means of other mechanisms that are not immediately evident when 

examining the clinical images. 

 

Further, from the analysis of the patients discussed here and from the remaining 

sample, it appears that subcortical structures and/or their connections are important 

for language functions. Based on the lesion locations and the deficits, it seems that 

single word comprehension relies on the connection between the auditory thalamus 

and the auditory cortex, whereas complex auditory comprehension involves the 

parietal lobe. Word fluency seems related to the subcortical structures (putamen, 

caudate and thalamus) and/or their connection. Semantic fluency relies on an intact 

connection between the anterior temporal lobe and the frontal lobe (i.e. uncinate). 

Confrontation object naming (i.e. verbal response to visually identified image) might 

be processed via the inferior longitudinal fasciculus (connecting occipito-temporal 

regions) for object recognition and then through the ventral (i.e. uncinate) or dorsal 

(i.e. arcuate) stream for object naming. Repetition, in the presence of the lesion to 

the left arcuate fasciculus, might be compensated ipsilateral via the uncinate 

fasciculus or contralateral through the right arcuate fasciculus. These observations 

are in correspondence with early aphasiology literature (Marie 1926). 
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CHAPTER 12  GENERAL DISCUSSION 

‘Science is not about finding the truth at all, but about finding 
better ways of being wrong. The best scientific theory is not the 
one that reveals the truth — that is impossible. It is the one that 
explains what we already know about the world in the simplest 

way possible, and that makes useful predictions about the future.’ 

(Schofield 2013) 

 

Aphasia, in its entire complexity, has been systematically studied for over a century. 

Although some breakthrough achievements have been established, for example by 

identifying critical language-related areas, the nature of aphasia recovery remains 

vague. Nevertheless, continuous research concerning the aetiology and 

pathophysiology have fostered our understanding which can help to comprehend 

the nature of this often life-long language impairment and, where possible, the 

recovery therefrom. Several approaches have been used in the past to explore its 

aetiology, pathophysiology and recovery with the goal to optimise early intervention 

and therapy outcome. The following general discussion will bring together these 

approaches, discuss and integrate the main research findings and evaluate them 

critically.  

 

To the best of the author’s knowledge, this is the first report of an acute-to-chronic 

longitudinal DTI study investigating post stroke language recovery. Previous studies 

in the healthy population suggested that the arcuate fasciculus is related to 

language (Catani et al. 2007). Likewise, studies in aphasic patients showed that 

damage to the arcuate fasciculus (as in reduced FA or reduced number of 

streamlines in the left hemisphere) is a predictor of language deficits, especially for 

articulation, repetition, and comprehension (Breier et al. 2008; Hosomi et al. 2009; 

Marchina et al. 2011; Yamada et al. 2007). In this study, we also found the arcuate 

fasciculus to be a predictor of recovery, though given the methodological limitations 

(which were not considered in the previous clinical studies referenced) we focused 

on the unaffected contralesional hemisphere. 
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12.1 Use of diffusion MRI and tractography in the clinical arena 

Since its introduction to the research arena in the 1990s, diffusion MRI and 

tractography have constant methodological advances. In addition, interpretation of 

the results has been refined, and novel indices of microstructural integrity have 

been described. In the past couple of years the gap to the clinical arena was 

bridged and DTI has been applied to a variety of neurological and psychiatric 

conditions (Maas & Mukherjee 2005; Ciccarelli et al. 2008).  

Neurological diffusion MR studies included, for example, small vessel disease 

(Holtmannspötter et al. 2005; Patel & Markus 2011; O'Sullivan et al. 2005; de Laat 

et al. 2010), stroke (Mukherjee 2005; Chien et al. 1992; Sotak 2002; Warach et al. 

1992; Keir & Wardlaw 2000; Gillard et al. 2001; Thomalla 2005), neurodegenerative 

diseases (Basser et al. 2000; Finger 1994; Le Bihan 2003; Acosta-Cabronero et al. 

2010; Acosta-Cabronero et al. 2011; Greicius & Kimmel 2012; Y. Assaf 2008; 

Metzler-Baddeley, Hunt, et al. 2012a; Prodoehl et al. 2013; Ciccarelli 2007; Meijer 

et al. 2013; Inglese & Bester 2010; Pagani et al. 2007), epilepsy (Assaf et al. 2003), 

and traumatic brain injury (Shenton et al. 2012; Kinnunen et al. 2011).  

Diffusion MR studies of psychiatric disorders include schizophrenia (Catani et al. 

2011; Alba-Ferrara & de Erausquin 2013; Williamson & Allman 2012; Kanaan et al. 

2009), autism (for a review see Travers et al. 2012), attention deficit hyper-activity 

disorder (for a review see van Ewijk et al. 2012), affective disorders (for a review 

see Sexton et al. 2009), and psychopathy (Craig et al. 2009).  

Before the introduction of DTI into the clinic, it was applied in the healthy population. 

DTI in healthy people hence replicated previous post mortem dissections (Thiebaut 

de Schotten, ffytche, et al. 2011b; Yoshida et al. 2013; Lawes et al. 2008; Catani et 

al. 2007).  

Taking all of these studies together, it is evident that diffusion MRI and tractography 

are sensitive to alterations in white matter architecture and microstructural changes 

that occur during brain maturation, normal aging, and pathology. 

However, tractography cannot yet be considered as a fully validated clinical tool as 

methodological impediments are still being recognised (e.g., tract displacements in 

the presence of lesions and further issues that have been discussed throughout this 

dissertation). However, constant advances in diffusion methods and refined 

algorithms lead to shorter acquisition times and better data quality. These 

enhancements will allow DTI to be used as a clinical tool which, we hope, will be 

widely distributed across clinical facilities. 
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12.2 Main findings and discussion of the hypotheses 

12.2.1 General hypotheses 

12.2.1.1 ‘Classical predictors’ and their relevance for aphasia severity 

When comparing the baseline and follow-up assessments, all patients improved. At 

follow-up at six months post onset, the majority of patients were classified as 

anomic. The original WAB-R does not provide a score or category indicating normal 

language performance. The cut-off score used in this study originates from the work 

of Pedersen et al. (2004) and Swindell et al. (1984). Even though considerable 

improvements occurred, some patients were still perceptively dysphasic beyond 

anomia. This indicates that the WAB-R might not be sensitive enough to detect 

higher-level impairments. It should be noted here that no current test is ideal to 

assess language difficulties at baseline and the chronic stages alike (see also 

subchapter 2.2). Nonetheless, in order to have a comparable measure the same 

test should be used for both assessments. 

In this study, aphasia severity at baseline and after six months was independent of 

age and gender. Also, no gender differences were observed for the recovery, which 

is in line with the literature (Kertesz & Phipps 1977; Pedersen et al. 2004; Engelter 

et al. 2006; Ferro & Madureira 1997; Hier et al. 1994; Brust et al. 1976; Lazar et al. 

2008; Pedersen et al. 1995; Goldenberg & Spatt 1994).  

The importance of lesion size and location has been debated in the literature 

(Kertesz et al. 1979; Pedersen et al. 1995; Laska et al. 2001; Inatomi et al. 2008; 

Lazar et al. 2008; Goldenberg & Spatt 1994; Plowman et al. 2012). In the current 

study, lesion size influences the initial aphasia severity but seemed to have less 

impact on longitudinal severity. The inconsistencies across previous studies might 

originate from different methodologies, where lesions are defined on CT, DWI, and 

PWI. Also the influence of hypoperfused tissue has only recently been taken into 

account and recent studies suggest that cerebral hypoperfusion might be a better 

indicator for aphasia severity than lesion size, especially in the acute stage 

(Fridriksson et al. 2002). This will be further discussed below (12.2.4). 

Stroke severity, as obtained from the NIHSS, did not correlate with baseline or 

longitudinal severity in this study. This finding is in contrast to previous work where 

NIHSS was predictive of aphasia severity (Bruyn 1989; Inatomi et al. 2008; Fazio et 

al. 1973); One fact that might bias our observations is that the NIHSS score on 

admission was used to correlate with language assessments obtained at a later 

stage. These scores were not obtained by the research team but were taken from 
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the clinical notes. Hence, there is a possibility that differences in qualification might 

be present that could impede the subjectivity of the test (Schmülling et al. 2008). 

Other differences in comparison to previous studies were also noticed. For 

example, the study by Inatomi et al. (2008) used the NIHSS criteria for aphasia as 

well as measures obtained from non-standardised language tests. How these 

compare to the overall WAB-R score in our study is not clear. Further, patients with 

aphasia often remain disabled despite low NIHSS (Paolucci et al. 1998). Previous 

studies also showed a good correlation between NIHSS taken 24h from admission 

and acute imaging, such as DWI and PWI (Tong et al. 1998). In our study, only the 

initial NIHSS was available for all subjects but not the 24h score and the imaging 

was obtained at a later stage. A more detailed investigation of the NIHSS and WAB-

R as well as imaging measures should be undertaken, given that the NIHSS is the 

most standardised form of acute stroke assessment adopted in clinical and 

research settings. A G*Power calculation indicated that our study would have 

needed a total sample size of 74 patients to detect a correlation between NIHSS 

and language scores with an effect size of f2=0.15, alpha 0.05 and a power of 0.95. 

This indicates that we were significantly underpowered to draw meaningful 

conclusions from our NIHSS data. 

 

12.2.1.2 Influence of thrombolysis 

Previous studies reported on the beneficial effects of thrombolysis, such as reduced 

lesion size and functional recovery (Parsons et al. 2002; Saver et al. 2013). In this 

study by Parsons et al. (2002), patients had comparable initial lesion extent on DWI 

and PWI but differed at later imaging, where thrombolysed patients presented with 

smaller lesion extent. However, how thrombolysis affects aphasia and aphasia 

recovery is not clear. Acute stroke patients presenting with language impairments 

are more likely to receive the treatment and tend to present with smaller lesions 24h 

after treatment (Kremer et al. 2013). This is in line with the aforementioned study by 

Parsons et al. (2002) where thrombolysed patients tend to present with smaller 

lesions regardless of the presence of aphasia. The potential benefits of 

thrombolysis for aphasia recovery are not yet fully understood (Maas et al. 2012). 

During the course of our study, the rate of thrombolysis treatments was constantly 

increasing at KCH and amongst our baseline study participants the majority of 

patients had received rtPA (13/18). Even though tendencies were observed 

whereby thrombolysed patients seemed to have more severe aphasia at baseline 

and steeper recovery slopes, the current study is underpowered to draw any sound 
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conclusions from these data. Further, the availability of thrombolysis might be 

changing the lesion patterns observed. This means that, for example, in patients 

that would have had very large MCA infarct, a rapid resolution of the clot would 

facilitate reperfusion of distal cortical areas but might leave highly sensitive 

subcortical structures damaged. This is merely a working hypothesis that would 

need further testing in larger stroke cohorts. 

 

In conclusion, several factors are influential in recovery from aphasia, but a strong 

predictor model has not been conceptualized based on patient-related or stroke-

related factors.  

 

12.2.2 Lesion-based hypotheses 

Lesions were manually delineated on T1-weighted images for this study. However, 

results are different when using the less established approach of defining lesions on 

diffusion-weighted images. In this case, lesion extent is considerably larger than on 

T1-weighted MR imaging, especially in the acute stages. We decided to use the 

classical approach (i.e. lesion delineation on T1-weighted MR images) here for our 

results to be comparable, however, in the future DWI lesion extent should also be 

considered. 

 

12.2.2.1 Commonly damaged brain structures and their implications for 

aphasia 

A lesion overlay analysis at baseline revealed the highest overlay in our sample in 

the inferior frontal gyrus and the peri-insular nuclei and white matter. These peri-

insular regions remain significantly affected at the chronic stage. It should be 

considered here that the chronic group is reduced compared to the baseline (9 vs. 

18 patients) and hence the overlay is less powerful and more diverse. Nonetheless, 

these structures have been implicated in early literature on aphasia. The inferior 

frontal gyrus needs no further introduction as critical area for aphasic symptoms. 

Fewer consensuses is available for aphasia in cases of subcortical lesions.  

The basal ganglia are primarily known for their involvement in motor function. 

However, they are closely connected to each other and cortical areas, including 

language-relevant cortices. The putamen, for example, has afferent connections to 

the motor, premotor, and supplementary motor cortices whilst its efferent 
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connections pass through the globus pallidus and the thalamus. The putamen has 

also been shown to be involved in cases of subcortical aphasia, i.e. where a lesion 

does not affect the convexity but only deep brain structures (Naeser et al. 1982; De 

Boissezon et al. 2005; Cappa 1997; Mega & Alexander 1994; Nadeau & Crosson 

1997). 

The head of the caudate nucleus, whose main afferent and efferent connections are 

with the prefrontal cortex, has been implemented in acute aphasia though these 

symptoms were transient within two weeks in most patients (Kumral et al. 1999). It 

has been suggested that the language deficits manifest when the caudate lesion 

extends to the anterior limb of the internal capsule (Damasio et al. 1982). 

Subcortical aphasias have been criticised and were deemed artefacts originating 

from cortical hypoperfusion, remote cortical damage that is not apparent on clinical 

imaging, or thalamic disconnections (Nadeau & Crosson 1997; Nadeau 2008; Olsen 

et al. 1986; Hillis et al. 2002).  

Thalamic lesions with effects on language have been reported for i) ischemic and 

haemorrhagic insults, ii) gliomas and iii) surgical lesions (thalamotomy) for 

treatment (Vallar et al. 1988; Jonas 1982; Bruyn 1989). The literature is, however, 

controversial – and especially with regards to the affected nuclei and the type of 

resulting dysphasia (Penfield & L. Roberts 1959; Crosson et al. 1986; Bruyn 1989). 

Lesions to thalamic nuclei most commonly affecting language function were 

reported as the pulvinar and ventralposterior lateral (VPL) nucleus (Lecours, Vanier, 

et al. 1983c; Bruyn 1989; Fazio et al. 1973). The degree of recovery amongst 

subcortical aphasia stroke patients varies substantially but symptoms are transient 

in most cases (Metzler-Baddeley, O'Sullivan, et al. 2012b; Vallar et al. 1988). 

Thorough investigation of the relationship between the thalamus and language 

function were undertaken by Penfield and co-workers in the late 1950s to early 

1960s (Jones et al. 2013; Penfield & Roberts 1959). Here, thalamo-cortical 

projections were considered equally, if not more important, than the ipsilateral 

association connections between language regions. The authors justify this based 

on the greater number of efferent and afferent thalamo-cortical connections to 

Broca’s and Wernicke’s areas as well as the inferior parietal lobe compared to the 

number of cortico-cortical connections between those areas (Figure 90B). This 

deduction on the connectional anatomy between those structures was mostly 

gained from electrical stimulation of the thalamus or therapeutic surgical destruction 

thereof.  
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Figure 90 Thalamo-cortical connections between thalamic nuclei and language 
zone 

This figures shows the thalamo-cortical connections of language areas according to Penfield 
(modified from (André Lecours, Vanier, et al. 1983c). A depicts the reciprocal connections 
between thalamic nuclei and the language cortex. The left hemisphere is here presented in 
a Mercator projection. B shows the reciprocal thalamo-cortical and cortico-cortical 
connections between the inferior frontal and inferior parietal lobe language areas. It is 
indicated here that the thalamo-cortical connections outnumber ipsilateral associative 
connections. VA, VL, VPM= ventral anterior, ventral lateral, and ventral postero-medial 
nuclei of the thalamus; LP= lateral posterior nucleus; P=pulvinar; DM= dorsomedial nucleus; 
LG=lateral geniculate body; MG=medial geniculate body; Calcar= axis of the calcarine 
fissure. 

The thalamus is extensively connected to cortical areas and subcortical structures 

(Figure 85) and is therefore directly implicated in language functions. Thalamic 

aphasia is defined by anomia in spontaneous speech, impaired confrontation 

naming, and relatively normal grammar, articulation and repetition (Nadeau 2008). 

Thalamic aphasia is therefore predominantly a lexical-semantic impairment 

although syntactical impairments (i.e. agrammatism) have also been described (De 

Witte et al. 2006). 

The selective involvement of the thalamus, without the basal ganglia, has been 

replicated for syntactic and semantic parameters of acoustically presented 

sentences using EEG recordings from deep brain structures (Wahl et al. 2008). The 

authors suggest that syntactic-semantic stimuli are processed along a thalamo-

cortical network. 
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12.2.2.2 Investigation of lesion-symptom interaction with VLSM 

The construct of modular functions of isolated cortical regions has been postulated 

for many decades and inevitably researchers and clinicians alike were eager to see 

if common areas are damaged in patients with certain dysfunctions. This ultimately 

resulted in a method today referred to as voxel-based lesion-symptom mapping 

(VLSM), whereby statistical analysis (e.g., Brunner Menzel test) are applied to 

identify brain voxels that are related or even predictive of certain deficits (Bates et 

al. 2003; Rorden, Karnath, et al. 2007b). As with any (neuroimaging) method VLSM 

is not flawless and still has some limitations that await to be conquered in the years 

to come (Rorden & Karnath 2004).  

For our study, we first used VLSM to identify voxels that are predictive of the overall 

aphasia severity at baseline, and repeated this analysis for repetition deficits.  

The analysis revealed that the voxels associated with overall aphasia severity at 

baseline lie primarily within the white matter of the middle and inferior frontal gyri 

with extension to the posterior superior temporal gyrus/ inferior parietal lobe and 

Heschl’s gyrus. For repetition, similar regions were identified in the white matter of 

the middle and frontal gyri but with a wider medial-lateral extent and additional 

involvement of the temporal stem. 

These findings are in agreement with the hodological literature as they coincide with 

the trajectory of the anterior and long segments of the arcuate fasciculus (Catani & 

Thiebaut de Schotten 2012); likewise, topological studies identified lesions to the 

inferior parietal/superior temporal lobes as crucial for repetition deficits (Anderson et 

al. 1999). Repetition in healthy volunteers was shown to activate superior temporal 

and premotor cortices bilaterally (for word lists and single words), or ipsilaterally (for 

non-word repetition) (Saur et al. 2008; Ohyama et al. 1996; Abo et al. 2004; Price et 

al. 1996). For aphasic patients, the pattern of activation is altered with some 

patients activating ipsilateral peri-infarct regions (Heiss et al. 1999); whereas other 

patients utilise the right hemisphere for repetition (Abo et al. 2004; Ohyama et al. 

1996). Heschl’s gyrus contains the primary auditory cortex and is therefore 

important for auditory comprehension. Previous studies have consistently reported 

a leftward asymmetry for Heschl’s gyrus with regards to volume (Penhune et al. 

1996; Penhune et al. 2003), surface area (Chiarello et al. 2004), length (Schneider 

et al. 2005), and its cytoarchitecture (Morosan et al. 2001). It was further shown that 

the increased left volume can be attributed to increased white matter rather than 

grey matter (Penhune et al. 1996) and to cellular layering (Hutsler & Gazzaniga 

1996). Substantial inter-individual variability was also reported for this structure 
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(Abdul-Kareem & Sluming 2008; Leonard et al. 1998). This asymmetry is further 

replicated on a functional level, where it is suspected that the left is relevant for 

temporal resolution, whereas the right is relevant for spectral resolution (e.g., pitch) 

(Zatorre, Belin, et al. 2002a; Zatorre, Bouffard, et al. 2002b; Yoo et al. 2005). 

Bilateral damage to Heschl’s gyrus results in cortical word deafness (Clark & 

Russell 1943). None of our patients had a bilateral lesion but the left Heschl’s gyrus 

was affected in patients with repetition deficits. 

 

12.2.3 DTI-based hypotheses 

The central hypothesis of this study was that left-hemispheric stroke patients 

suffering with language impairments might recover better in the presence of a right-

hemispheric long segment of the arcuate. Before considering this idea, related 

hypothesis had to be addressed first. These include i) the replication of the three 

segments in this clinical cohort and ii) whether the lesion load to the left arcuate in 

itself is predictive of aphasia severity. Further, the 19th century hypothesis that 

lesions along the arcuate cause conduction aphasia, i.e. isolated repetition deficits, 

was investigated. Finally, the central hypothesis was tackled, concentrating on the 

perisylvian white matter anatomy in the contralesional hemisphere. 

 

12.2.3.1 Replication the three segments of the arcuate fasciculus bilaterally 

In accordance with studies in healthy volunteers, the three segments were 

dissected bilaterally unless the lesions were directly encroaching on the tract. None 

of the diffusivity measures were significantly lateralised at baseline. After one year 

the volume was significantly reduced in all left hemispheric segments, apart from 

the anterior segment. FA was also selectively reduced in the left long segment. 

 

12.2.3.2 Lesion load of the arcuate predictive of severity 

The lesion load to the left arcuate fasciculus has been implicated as a predictor for 

language deficits, especially for articulation and naming impairments (Marchina et 

al. 2011) and repetition (Kummerer et al. 2013). The most commonly employed 

approach is atlas-based, however, different atlases have been used for different 

studies. For this study, arcuate lesion load was not predictive of aphasia severity at 

baseline or six months after symptom onset. This unexpected finding might be 

related to the lesions being drawn on T1-weighted images and hence the lesion 
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extent might have been underestimated. Further the lesion load classification was 

only obtained as a binary measure, which reduces the statistical possibilities of 

analysis. Consistent and well-established measures of lesion-load will need to be 

evaluated in future studies.  

 

12.2.3.3 The role of the arcuate in repetition/conduction aphasia 

The left arcuate fasciculus has long been the suspected culprit of conduction 

aphasia and/or repetition deficits (Geschwind 1970; Geschwind 1965a). In 

correspondence with the abovementioned lesion-symptom mapping for repetition, 

the voxels implicated as predictive for repetition deficits are located along the 

trajectory of the anterior and long segments of the arcuate. Therefore, the lesion 

load to the arcuate might predict repetition deficits. Surprisingly, the left arcuate 

lesion load was not predictive of repetition deficits at baseline or six months after 

symptom onset for our study. When comparing our results with the literature, the 

role of the left arcuate fasciculus for repetition and conduction aphasia has been 

questioned (Bernal & Ardila 2009), whilst other groups suspect inter-individual 

variability to account for negative results (Berthier et al. 2012; Steinmetz & Seitz 

1991; Fedorenko & Kanwisher 2009). Other DTI studies did not quantify lesion load 

as such but reported on surrogate measures of damage that i) a reduction in the 

number of streamlines of the left arcuate is the strongest predictor of aphasia 

(Hosomi et al. 2009) and ii) reduced FA of the left arcuate is associated with 

repetition and comprehension deficits, whereby comprehension deficits are also 

related to damage to the superior temporal gyrus (Breier et al. 2008). Other non-

DTI-based studies, however, did report correlations between lesion load (defined by 

atlas overlay) in arcuate areas and aphasia symptoms (Marchina et al. 2011; 

Kummerer et al. 2013). 

 

12.2.3.4  Role of the Right hemisphere for language and aphasia recovery 

We were able to demonstrate that patients with a larger long segment of the arcuate 

fasciculus in the contralesional right hemisphere recover better from aphasia 

regardless of gender, age and lesion size. This is a novel finding that is selective for 

the right long segment. In the healthy population, a bigger right-hemispheric long 

segment of the arcuate has been shown to be beneficial for language performance 

(Catani et al. 2007). How the right hemisphere is contributing to language functions 

and the recovery from aphasia is controversial (Selnes 2001). It has, however, been 
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suggested that recovery from aphasia may depend on the ability of the 

contralesional hemisphere to subserve language functions (Saur et al. 2006; Lee et 

al. 1984). Various language capacities have been shown to be performed or 

mediated by the right hemisphere. Using PET imaging, for example, repetition was 

related to right hemispheric activation (Ohyama et al. 1996). fMRI showed that 

semantic anomia in aphasia patients is associated with activations in the right 

hemisphere (Fridriksson et al. 2009; Raboyeau et al. 2008). Further, functional 

imaging studies, for example, indicate the right hemisphere for articulation related to 

suprasegmental aspects (i.e. prosodic and non-propositional) (Dogil et al. 2002; 

Ackermann & Riecker 2004; Kemeny et al. 2005; Zatorre, Belin, et al. 2002a). In 

general, receptive and expressive language processes can be carried out in part by 

the right hemisphere. 

A strong dichotomisation between left-hemispheric and right-hemispheric functions 

is only applicable to adults, contrary to earlier beliefs (Kinsbourne 1975). Functional 

imaging has shown that in children both hemispheres are rather equally involved in 

linguistic functions (Moscovitch 1981; Friederici et al. 2011; Szaflarski et al. 2006). 

This age-dependent model of lateralisation assumes that language specialisation to 

the left hemisphere is obtained around pubescence (Szaflarski et al. 2006). This 

coincides with the maturation of myelination in language-related white matter at the 

same age (Pujol et al. 2006).  

Language functions and their underlying anatomical substrates progressively 

lateralise towards the left hemisphere during development (Skeide	  et	  al.	  2014;	  Holland	  

et	   al.	   2001;	   Amunts	   et	   al.	   2003), with some language functions remaining 

predominantly being processed by the right hemisphere in adult life (Ross	  &	  Mesulam	  

1979;	  Weintraub	  et	  al.	  1981). A recent fMRI study has shown that children up until the 

age of 10 years synchronically process semantic and syntactic information whereas 

adults process both separately and then integrate the information (Skeide	  et	  al.	  2014). 

This is reflected in a progressively left lateralised activation (Skeide	  et	  al.	  2014). How 

this functional segregation is exactly achieved, what it is triggered by and how both 

hemispheres interact in the healthy brain is still a matter of on-going research. 

How exactly this functional segregation is achieved, what it is triggered by and how 

both hemispheres interact in the healthy brain is still a matter of on-going research. 

This applies even more so to the changes in functional activation and structural 

plasticity post stoke. Different suggestions about this complex dichotomisation and 

interaction were introduced to the linguistic community over the decades. For 
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example, the idea that the default setting is an inhibition from the left hemisphere 

over the right hemisphere for linguistic functions via interhemispheric commissures. 

In the presence of a left-hemispheric stroke, this inhibition is interrupted, and could 

lead to either unmasking of previously ready language capacities or reorganisation 

of right hemisphere language areas (Lindell 2006; Cappa 2000). This idea would 

also be supported by novel fMRI findings whereby a temporary left-to-right shift has 

been observed post stroke (Saur et al. 2006). The best aphasia recovery is seen in 

patients where this activation shift is temporary and returns to the left hemisphere. 

Another theory was that early sensory stages of processing are common to both 

hemispheres alike. For later processing however, specialised left and right 

hemispheric systems take over, whilst interhemispheric crosstalk via commissural 

pathways is still given (Moscovitch 1976; Moscovitch 1983; Moscovitch 1981). For 

this model, lesion site is important, as the site of the lesion will produce different 

symptoms.  

Whether aphasia recovery materialises via recovery of lesioned tissue, ipsilateral or 

contralateral reorganisation, or ipsilateral or contralateral compensation has yet to 

elucidated. 

 

12.2.3.5 Longitudinal plasticity of white matter structures 

The important question of longitudinal recovery being related to structural plasticity 

was addressed with the one year repeat scan. The hypothesis was, that if anything 

were to change, we would expect an increase in structural connectivity as a 

representation of functional increase. This hypothesis had meanwhile gained 

foundation when a DTI-based study reported on plasticity (i.e. FA increase) in the 

left arcuate fasciculus when learning to read (Thiebaut de Schotten, Cohen, et al. 

2012a). Overall, we observed an increase in FA in the right hemisphere related to 

improvements in aphasia severity using TBSS. At the same time, peak perfusion in 

the left hemisphere increased significantly after one year compared to the baseline 

perfusion measure as seen with cASL. Contrary to expectation, however, the DTI 

analysis showed a bilateral decrease in arcuate volume for the posterior and long 

segments. A selective FA reduction in the left long segment was observed. Given 

that significant overall FA changes were observed in the TBSS analysis but not the 

tract-specific DTI analysis, these changes might be explained by callosal 

degeneration, which would ultimately lead to increased FA in the right hemisphere 

as the number of streamlines within previously fibre-dense areas will reduce with 
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degeneration. The corpus callosum is the largest white matter tract in the human 

brain (Hofer & Frahm 2006; Aboitiz & Montiel 2003) and any lesion will necessarily 

affect callosal projections. Hence, an interhemispheric callosal degeneration could 

be expected and might partially explain the observed reduction in arcuate volume 

bilaterally. An interesting question that arises from this train of thought is the relation 

of the corpus callosum to hemispheric lateralisation in general and the arcuate 

fasciculus in particular. Ringo et al. (1994) put forward the controversial theory that 

larger brains impose a temporal limitation on conduction speed (i.e. larger brain, 

longer interhemsipheric transmission time), which is driving interhemispheric 

isolation and thereby hemispheric lateralisation. Aboitz et al. (Aboitiz & Montiel 

2003) replicated the observed reduction in conduction speed with increasing 

interhemsipheric distances. In an earlier study, Aboitz et al. (1992b) reported on the 

relation of callosal fibres and ‘language-gifted’ cortex in relation to gender and 

observed gender-dependent ‘pathway-specific decrease in interhemipsheric 

connectivity with increasing lateralisation’ (p.154). Brain lateralisation of language 

cortices is here defined as anatomical asymmetries in Sylvian fissure length, which 

reportedly is a proxy of functional lateralisation (Aboitiz, Scheibel & Zaidel 1992a). 

The authors report a negative relationship (in men only) between the size of the 

isthmus (part of the corpus callosum) and language asymmetry, meaning that the 

bigger the isthmus the more left-lateralised language is (Aboitiz, Scheibel, Fisher, et 

al. 1992b). In the same paper, similar relations were reported for the anterior 

splenium in women. These gross anatomical measures have, however, been 

criticised and their relation to handedness and neuroanatomical structures are 

inconclusive (Beaton 1997). This debate might be revisited using advanced imaging 

methods to identify the direct relation between callosal fibres and perisylvian 

pathways. 

 

12.2.3.6 Beyond the arcuate fasciculus 

The arcuate fasciculus has been the primary language pathway ever since the two 

remote language areas have been described by Broca and Wernicke. However, 

with advanced understanding of the complex language system, a dual pathway 

network has been suggested in analogy of the visual dual stream system. As 

discussed throughout this dissertation, the ‘ventral stream’ has gained considerable 

attention over the past years. The inferior longitudinal fasciculus, connecting 

occipito-temporal cortices has been implicated for reading. Semantic processes 

have been implicated for the inferior fronto-occipital fasciculus and the uncinate 
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fasciculus, connecting anterior temporal pole and orbitofrontal cortex. These 

observations are based on indirect fMRI evidence (Saur et al. 2008), tract-based 

DTI evidence (Catani et al. 2013), and electrocortical stimulation (Duffau 2005). For 

a review see also Dick and Tremblay (2012). 

In our study, FA of the right inferior fronto-occipital fasciculus (iFOF) was negatively 

associated with syntax and phonemic fluency at baseline and FA of the left iFOF 

was positively correlated with object naming at six months post onset. We further 

replicated the anatomy of the frontal aslant tract (FAT) and observed a positive 

correlation between laterality and word repetition, which is consistent with the 

literature available (Catani, Dell'Acqua, Vergani, et al. 2012b). The FAT is 

connecting Broca’s area and pre-SMA and has hence should be involved in 

articulation processes. The results from these analyses are novel and await 

replication and validation in both healthy and clinical populations. 

 

12.2.4 Perfusion-based hypotheses 

It is important to note that we cannot speak of perfusion deficits as such, as there is 

no reference to previous perfusion values. Only a relative decrease or increase can 

be observed in relation to the surrounding and contralateral areas. Future studies 

might consider using corrected perfusion values, normalised to the perfusion in 

regions where little perfusion changes are to be expected. 

Cortical and subcortical lesions have long been debated as the sole location and 

cause of deficits. More recently, it was suggested that the concept of subcortical 

aphasia might be revisited as no lesion is a pure subcortical lesion due to remote 

cortical hypoperfusion (Nadeau 2008; Hillis et al. 2002). Likewise, it was shown that 

hypoperfusion in language areas is related to aphasia and even more so 

reperfusion of those areas with aphasia recovery (Metter et al. 1990; A. Hillis et al. 

2000; A. E. Hillis et al. 2006). Perfusion deficits have hence been suggested as the 

strongest predictor of aphasia severity (A. E. Hillis et al. 2001; Fridriksson et al. 

2002). Also, overall initial bihemispheric metabolic depression has been described 

subsequent to stroke (Cappa et al. 1997). In this study, no association between 

perfusion measurements and language measures were observed. It was not 

possible to replicate the previously described finding of a hypoperfusion within 

Wernicke’s area being predictive of the severity of word comprehension 

impairments. This discrepancy might be due to different methodological approaches 

in relation to the imaging methodology (i.e., exogenous vs. endogenous tracer), 
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diverging perfusion measurements (i.e., relative delay in perfusion vs. average 

perfusion within ROI), different language assessments (non-standardised 

assessment vs. standardised battery), and sample size. Further considerations will 

be detailed in the discussion of the limitations of this method below. 
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12.3 A hodotopic framework for clinico-anatomical correlation 

The “hodotopic framework” was introduced in 2005 by Marco Catani and Dominic 

ffytche as an elaboration on Geschwind’s disconnection model based on Wernicke’s 

associationist’s school (see introduction for details) and is summarised in Figure 

91. In the figures a simplified large-scale network of cortical territories and white 

matter connections is represented. A series of specialised areas are connected by 

U-shaped association fibres to form a functional territory. These territories are 

connected by long white matter association tracts. This framework uses a new 

terminology to allow us to extend the model beyond classical neurological disorders 

of white matter disconnections and cortical deficits to include those involving white 

matter hyperconnectivity and cortical hyperfunction (e.g. epilepsy, schizophrenia).  

“Hodotopic” reflects the dual contribution of specialised cortical areas (topos = 

place) and connecting white matter pathways (hodos = path) to higher cognitive 

functions. This framework includes the presence of “functional” epicentres, which 

are interconnected by white matter pathways, and implies that multiple areas are 

able to undergo the same function or that single areas are pluripotent. 

Theories of aphasia can be divided into those emphasising dysfunction at specific 

brain locations (topological) and those emphasising dysfunction in the connections 

between brain regions (hodological). Classical examples would be a typical 

expressive aphasia with a lesion to the inferior frontal gyrus pars 

opercularis/triangularis (topological) and conduction aphasia with a lesion affecting 

the connections between inferior frontal gyrus and superior temporal gyrus 

(hodological). Both theories are guided by different methodologies (figure below). 

For example, a topological theory might rely on post mortem autopsies, functional 

magnetic resonance imaging or voxel-based morphometry (VBM). All of these 

techniques, directly or indirectly, allow us to infer a critical function performed by a 

specific cortical area. By contrast, hodological theories are mainly utilizing structural 

connectivity methods such as tractography but also mathematical methods based 

on functional connectivity. The latter does not necessarily imply an anatomical 

connection between two areas and might include dynamic causal modelling, EEG 

coherence analysis, structural equation modelling etc. 

The most famous account of aphasia, which became known as the famous case 

“Tan”, was interpreted by Paul Broca (1863) within a purely topological framework: 

“Here are eight instances in which the lesion was in the posterior third of the third 

frontal convolution. This number seems to me to be sufficient to give strong 

presumptions. And the most remarkable thing is that in all the patients the lesion 



Part III. General Discussion  Discussion 
 
 

 
Doctoral dissertation of Stephanie Forkel, King’s College London, 2013 298 

was on the left side. I do not dare draw conclusions from this”. This observation was 

later replicated and expanded on by many others and most famously by Carl 

Wernicke. In contemporary neuroscience, functional neuroimaging studies of 

language consistently show activation of cortices relevant to the modality and 

content of the language paradigm, e.g. word production elicits activation in BA 

44/45 and word comprehension studies activate mainly BA 22. In addition, as 

highlighted in the introduction, these regions largely coincide with classical intra-

operative stimulation studies by Penfield and more recent perfusion studies by 

Hillis. 

Although the evidence mentioned above provides strong support for the topological 

framework many cases are not accounted for within this model. This applies 

strongly to patients presenting, for example, with expressive aphasia with remote 

lesions outside the inferior frontal gyrus. Within the hodological framework these 

patients can be accounted for when assuming that a disconnection of a critical area 

to another causes the deficits. However, in the early 19th century connectional 

anatomy was only known through post mortem blunt dissections and animal models 

but not within the living human brain. This changed with the advent of diffusion-

weighted imaging tractography. Many of these previously hypothesized 

mechanisms that cause higher cognitive function disruptions need to be revisited in 

the light of current methodological advances. 

 

The current work is in line with the hodological framework and investigates the 

relation between cortical damage, white matter pathway damage and aphasia. In 

addition we wanted to explore the importance of the intact right hemisphere for 

language recovery. We observed that the volume of the long segment of the 

arcuate fasciculus in the right hemisphere (contralateral to the lesion) is an 

important predictive factor for recovery of language after stroke. The volume of the 

other segments in the right and left hemisphere was not correlated with recovery. In 

addition we have confirmed the importance of other predictive factors, including 

age, gender and lesion size. In particular, in our sample, lesion size in the left 

hemisphere is the strongest predictor of post stroke aphasia recovery after six 

months. Lesion size has previously been shown to play an important role in 

recovery through a variety of different mechanisms, including tissue neuronal repair, 

reperfusion of stroke tissue, and recruitment of peri-lesional spared areas 

(Croquelois et al., 2003; Heiss et al., 1999; Warburton et al., 1999). In larger 

lesions, compensation could also occur after recruitment of ipsilateral circuits not 
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previously concerned with language (Code, 2001; Crosson et al., 2007; Hillis and 

Heidler, 2002). An original finding of our study is the predictive value of 

tractography-derived measurements of tract volume in the right hemisphere. 

Specifically, the volume of the long segment connecting posterior temporal and 

inferior frontal regions is a good predictor of longitudinal recovery of aphasia after 

stroke.  

This result indicates that different mechanisms might be at play across the two 

hemispheres. As inferred from the model, lesion size is predictive of long-term 

outcome regardless of our added DTI measures. However, in the right hemisphere 

model the classical predictors do not sufficiently predict recovery, but when DTI 

measures are added, the model significantly improves and can explain up to nearly 

60% of the variance in language performances at follow-up. 

Recent tractography imaging studies show that the arcuate is involved in auditory 

memory (Catani et al., 2007; López-Barroso et al., 2013) and may have a role in 

recovery after stroke (Tuomiranta et al., 2013). Lopez-Barroso et al. (2013) reported 

a correlation between higher performances in an auditory memory tasks for pseudo-

words and strength of connectivity of the left long segment measured with both 

tractography (i.e. radial diffusivity) and functional connectivity (i.e. temporal 

correlation of BOLD response between the three peri-sylvian regions connected by 

the arcuate) in healthy people. The right long segments also play a role in auditory 

memory tasks based on semantic clustering strategies, where a larger volume of 

this segment is related to better performances (Catani et al., 2007). Furthermore, a 

recent single case study reported a woman with a stroke affecting the left arcuate 

fasciculus resulted in aphasia. After rehabilitation the patient was able to recover 

the ability to learn novel active vocabulary and the authors speculate that this was 

due to the presence of compensatory pathways in the right hemisphere (Tuomiranta 

et al., 2013).  

This hypothesis is in line with previous PET and fMRI studies that indicated an 

important role of the right hemisphere for aphasia recovery after stroke (Cappa, 

2000; Karbe et al., 1998; Saur et al., 2006). Two possible mechanisms have been 

suggested: unmasking of previously ready language capacities or reorganisation of 

right hemisphere language areas (Cappa, 2000). In both cases the presence of 

larger right long segment volume could facilitate direct cross-talk between right 

hemisphere homologues of Broca’s and Wernicke’s regions. Additionally, these 

studies revealed a dynamic activational shift to the contralesional hemisphere 

during recovery (Saur et al., 2006). This shift seems to be only advantageous for 
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recovery if of a temporary nature (Hillis, 2006; Saur et al., 2006; Szaflarski et al., 

2013). Nonetheless, in such cases the right hemisphere appears to be able to 

temporarily adopt linguistic competence beyond the non-verbal aspects already 

been assigned to the non-dominant hemisphere (e.g. prosody, intonation, and 

affective content) (Ross et al., 1988; Turkeltaub et al., 2012). Our study suggests 

that these right-hemispheric language functions could be mediated by a specific 

portion of the arcuate fasciculus. Currently, it remains difficult to determine how a 

pre-existing right arcuate could facilitate functional recovery. 

 

Figure 91 Topological and hodological frameworks for clinico-anatomical 
correlation  

Top panel: Topologic framework for clinico-anatomical correlation. Here the effects of a 
superficial cortical-subcortical lesion are described in terms of a combined topological effect 
and dischisis. Red arrows indicate hyperfunctioning areas, black arrows hypofunctioning 
areas. Bottom Panel: Hodotopic framework for clinico-anatomical correlation. A-B) The 
effects of a deep lesion on long tracts connecting distant areas. C-D) The effects of a 
cortico-subcortical lesion result in combined topological and hodological (diaschisis, 
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disconnection) dysfunction. Here the effects of a deep lesion are described in terms of a 
combined topological effect, disconnections and diaschisis. Red arrows indicate 
hyperfunctioning areas, black arrows hypofunctioning areas. 

 

Cortical pathology  

Figure 91 illustrates the different combinations of topological and hodological 

mechanisms. Figure 91 relates to the pathology of a cortical area and its underlying 

U-shaped fibres, such as might be caused by localised vascular, neoplastic, 

epileptic, or neurosurgical lesions. Cortical pathologies may cause two kinds of 

topological dysfunction, either hypoactivity or hyperactivity within a damaged area. 

The dysfunction may go beyond the affected cortical site to include cortical regions 

connected (i.e. diaschisis). As for pure hodologically-based dysfunction, these 

remote effects will demonstrate either a metabolic diaschisis (e.g. reduced 

cerebellar metabolism for controlateral frontal lesions) or a dynamic diaschisis, only 

being apparent for tasks normally requiring both interconnected regions. 

 

Subcortical pathology 

The second mechanism relates to pure subcortical white matter lesions leading to 

cortical dysfunction (hyper- or hypofunctioning) through a hodological effect (i.e. 

disconnection) (Figure 91, bottom panel A, B). For some tasks this dysfunction may 

simply reflect the failure or excess of transfer of outputs from one area to another 

(Lichtheim’s subcortical disconduction); however, for tasks requiring the 

simultaneous cooperation of cortical regions (e.g. synchronous bimanual 

coordination), one can consider the function itself to be distributed and the lesion is 

therefore disrupting or enhancing the function as a whole (Wernicke’s subcortical 

disconnection). Whether for a serial or distributed task, the dysfunction of connected 

regions may only be apparent for those tasks requiring both connected areas, the 

function of each area individually being normal when they are part of a different 

network. For some ‘irritative’ lesions of the white matter the hodological effect could 

result in the hyperactivity of the entire network or a combined hyper- and 

hypofunctional effect. 

 

Cortico-subcortical pathology 

The third type of dysfunction involves both hodological and topological mechanisms 
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(Figure 91 bottom panel C, D). In relation to deficits, this is the pattern most likely to 

be encountered clinically and would typically be caused by a large lesion. Here, the 

lesion involves both cortical and subcortical structures with superficial and deep 

white matter affected. In this case, combined topological and hodological effects 

produce widespread cortical dysfunction. Auditory hallucinations in schizophrenia 

provide an example of combined hodological and topological hyperfunction, with 

increased activation of Broca’s, Wernicke’s, and Geschwind’s territory (Lennox et al. 

2000) and indirect, diffusion tensor tractography evidence of decreased anatomical 

connectivity between these regions (Catani et al. 2011). 

In general, the hodotopic framework adds clinically useful features to existing 

models, in particular, extending them beyond classical neurological deficits and 

disconnections to encompass a broader range of disorders. Of course, its main 

clinical usefulness will come not from the generalisations outlined above, but from 

its application to specific functional domains. At least in the short term, the future of 

the clinico-anatomical correlation method in neurology and psychiatry is likely to be 

shaped by advances that are currently unfolding in the field of imaging. In the past, 

lesions could only be referred to cytoarchitectonic atlases, which provided little 

information on white matter tracts (e.g. Talairach and Tournoux, 1988). As a 

consequence, the clinico-anatomical correlation method could only link specific 

deficits with a discrete cortical area. Today, lesions can be mapped onto both 

cytoarchitectonic and white matter atlases, the latter derived for example from 

diffusion MRI (Wakana et al. 2004) or post-mortem dissections (Bürgel et al. 2006). 

This adds a new layer of complexity to the correlation method by linking deficits to 

inferred dysfunction within distributed networks (Rudrauf et al. 2008).  

Furthermore, we are now able to track pathways between distal cortical areas and 

obtain measurements of the microstructural integrity of white matter tracts in the 

living human brain. This allows the application of the clinico-anatomical correlation 

method outside the neurology clinic within the practice of functional psychiatry 

where a ‘lesion’ remains inferred, rather than demonstrable. 

By combining diffusion MRI with other functional imaging methods we will be able to 

go beyond a one-to-one correspondence of lesion site and deficit and understand 

the precise mechanisms (i.e. hypofunctioning or hyperfunctioning areas) underlying 

a wide range of symptoms. Both topological and hodological explanations will be 

used to test specific hypotheses and generate unbiased interpretations. This is as 

true today as at its beginning, when, for example, one-sided interpretation of the 

anatomical correlates of speech arrest deficit brought into existence Broca’s area 
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instead of Broca’s fasciculus. 

 

In summary, the current understanding of the anatomy of aphasia, from a 

topological (i.e. cortical) and hodological (i.e. connectional) point of view, is shown 

in Table 36 (adapted from Catani, Dell'Acqua, Bizzi, et al. 2012a). When applying 

the topological and hodological approach to language and aphasia research the 

crucial areas and pathways for normal function and dysfunction can be defined 

(Table 36). 

 

Table 36 Aphasia syndromes and their associated lesions 

Aphasia syndrome Topology 

Anatomical structure 

 

Cortical areas (BA) 

Hodology 

Wernicke Superior temporal gyrus 42,22,37 PS, LS 

Broca Inferior frontal gyrus 6,44,45 AS, LS 

Conduction Parietal and frontal lobes 42,22,37 LS 

Global Left MCA territory 6,22,37,39,40,42,44,45 AS, PS, LS 

Transcortical motor Anterior-superior to 
Broca’s area or thalamus 

6,8,9,46 AS 

Transcortical sensory Posterior, temporal-
occipital area 

22,37 PS 

Apraxia (orofacial) Inferior frontal, insula, BG  AS, FAT 

BA, Brodmann area; BG, basal ganglia; AS, anterior segment; PS, posterior segment; LS, long 

segment; FAT frontal aslant tract 

 

12.4 Limitations of tractography and their ramifications for this study 

This study benefited from the use of contemporary diffusion tensor imaging 

optimised for stroke patients. However, as previously mentioned (see also 

subchapter 5.3.3 in the introduction and Dell’Acqua and Catani 2012), DTI has 

some limitations that could affect the results obtained for this dissertation. The 

general advantages and limitations of DTI are summarised in Table 37. 
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Table 37 Advantages and limitations of DTI  

Modified from the work of (Dell'Acqua & Catani 2012; Catani 2006; Campbell & Pike 2013; 
Jones et al. 2013). 

Advantages Limitations 

In vivo Limited spatial resolution (i.e. multi-tissue 
populations, partial volume effect) 

Quantitative measurements  Validation is needed 

Not destructive  A priori knowledge of white matter anatomy 
required 

Non-invasive Indirect anatomical method 

Applicable to human and animal brain Presence of artefacts (i.e. false positive and 
false negatives) 

Hodological approaches to brain function/ 
dysfunction 

Operator dependent (tractography 
algorithm) 

Correlation with behavioural and other 
functional measures 

Limited visualisation of bending, merging 
and crossing fibres 

Applicable to large populations Pitfalls when trying to combine it with other 
brain mapping tools 

Time efficient No differentiation between afferent and 
efferent connections 

Multiple pathways within each subject Low angular resolution 

 

Albeit previous studies in healthy controls (Catani et al. 2007; Lebel & Beaulieu 

2009; Yeatman et al. 2011; Häberling et al. 2013; Powell et al. 2006; Vernooij et al. 

2007) and clinical cohorts (Hosomi et al. 2009; Yamada et al. 2007; Breier et al. 

2008; Marchina et al. 2011; Matsumoto et al. 2008) reporting on the laterality of the 

arcuate fasciculus, it was a conscious decision to refrain from this analysis for the 

current study. In the acute stages of a stroke the neuroanatomy is altered due to 

infarction, ruptured cellular barriers, and the presence of peri-lesional oedema. All of 

these processes affect white matter anatomy. Due to the break down of neuronal 

structures one would hence expect to see an FA drop in the chronic lesioned 

hemisphere. The tensor model is FA-based and thus a reliable reconstruction of the 

altered anatomy is not given. Due to the lack of information from the lesioned 

hemisphere, no lateralisation index was calculated but rather the focus was on the 

interindividual variability within the contralesional hemisphere. 

Furthermore, DTI is prone to produce false positive and false negative results as the 

tensor represents the average direction of water molecules within each voxel. In this 

study, it was at times difficult to judge – in the left hemisphere – if reconstructed 
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streamlines were true findings or false positives. The difficulty arises as the lesion is 

altering the structural arrangements causing white matter pathways to be displaced 

or interrupted. Least restrictions possible were applied during the reconstruction of 

streamlines. For example, minimal exclusion ROIs were implemented unless 

anatomical knowledge would dictate otherwise and visualisations were undoubtedly 

artefactual.  

 

In pathologies where atrophic changes are evident, DTI is prone to cerebrospinal 

fluid-based partial volume artefacts, which are mostly affecting white matter 

structures close to the ventricles, i.e. the corpus callosum and the fornix (Metzler-

Baddeley, O'Sullivan, et al. 2012b). These partial volume effects are more prone to 

alter diffusivity measures compared to anisotropy measures, whereby the first is 

elevated and the latter is decreased (Metzler-Baddeley, O'Sullivan, et al. 2012b; 

Pfefferbaum & Sullivan 2003). The pathways under investigation in this study are 

not closely related to the ventricles and should therefore be less affected by partial 

volume effects. 

The arcuate fasciculus can be readily dissected using DTI. Other white matter 

tracts, however, cannot be visualised due to the inability of conventional DTI to 

resolve multi-directionality within a voxel. In such cases, a supplementary analysis 

was conducted employing spherical deconvolution to overcome this methodological 

limitation (Thiebaut de Schotten, Dell'Acqua, et al. 2011a; Dell'Acqua et al. 2012; 

Dell'Acqua & Catani 2012).  

Given that this study is amongst the first to use DTI to investigate post stroke white 

matter changes in relation to language, some of the data presented here can only 

be compared to results obtained from control studies. DTI has only recently been 

introduced in clinical research and further validation studies are needed to establish 

consistency in the common changes associated with neuropathology (Yamada et al. 

2009; Metzler-Baddeley, O'Sullivan, et al. 2012b; Campbell & Pike 2013).  

Previous deterministic DTI studies of white matter anatomy in stroke are 

heterogeneous in their time of assessment post stroke (starting from two days up to 

two years post onset), their methodology (i.e. utilising a) standardised language 

assessments vs. a clinical diagnosis of aphasia; b) different scanners, c) different 

acquisition protocols), and their results (Roberts et al. 2003; Hosomi et al. 2009; 

Breier et al. 2008; Marchina et al. 2011; Campbell & Pike 2013). It should be 

considered here that changes in fibre attenuation, multi-directionality within sampled 
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voxels, and partial volume effects might influence FA values that are not tract 

specific but voxel specific (Dell'Acqua et al. 2012; Metzler-Baddeley, O'Sullivan, et 

al. 2012b; Jones et al. 2013). This may account for some discrepancies reported 

across studies. Whilst FA is the most widely used metric of anisotropy in research, 

its biological interpretation should be carefully conducted (Jones et al. 2013). The 

presence of pathological changes introduces another layer of complexity as 

measurements could be influenced by physiological evolution of damage and repair 

within the brain. This can lead to inconsistent FA measures and erroneous FA 

estimations. Further, a quantification of streamlines might be underestimated, as 

pathways are likely to be dislocated due to the presence of a lesion. 

Diffusion tensor tractography is based on the estimation of maximal anisotropy 

within a given voxel to determine the tensor direction. In this study we employed a 

fractional anisotropy (FA) threshold of 0.2, which yielded anatomical consistent 

results. A FA threshold of 0.2 is one of the standard thresholds used in tractography 

studies as it preservers high anisotropy voxels corresponding to white matter 

regions whilst at the same time rejecting low anisotropy voxels where there is 

increased uncertainty in the tensor orientation or the voxel is likely not to contain 

white matter (e.g., grey matter and cerebrospinal fluid). Given the presence of 

neuropathology in this study (i.e. left hemispheric stroke), we also pre-processed 

the data set with an FA threshold of 0.15, however, we observed increased spurious 

streamline reconstructions without a significant improvement in the anatomy of the 

tract.  

The primary objective of this study was to investigate the contralesional hemisphere 

(here right hemisphere) and refrain from tracking through lesioned tissue. An area 

of oedema commonly surrounds the core of a stroke lesion. In the presence of 

partial volume effects oedema can reduce the FA measurement in a given voxel 

and therefore streamlines might stop at the border of the lesioned area even though 

the white matter might still be present (i.e. false negative reconstruction). To 

suppress the effect of the oedema higher b-value acquisition, other fast diffusion 

component or multi-shell (e.g., multi b-value) approaches might be applied in the 

future. These are however more time consuming and hence not applicable for acute 

clinical populations at this point in time. These approaches can also be used to 

separate the contribution of different microstructural compartments, for example, 

fast diffusion intra- and extracellular diffusion (e.g., NODDI approach, Zhang et al., 

2012). 
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In contrast to other available methods, such as probabilistic or advanced 

tractography the following information is relevant. Advanced tractography was used 

in this work at times to overcome some of the limitations of DTI as explained above. 

The main advantage of the Damped Richard-Lucy, as recently described by Parker 

et al. (2013), is that the number of false positive reconstructions is considerably 

lower compared to a standard constrained spherical harmonic deconvolution 

approach. As far as we know this method is providing a robust estimate of real fibre 

orientation while reducing the number of false positive reconstructions. Likewise, in 

the presence of extremely low anisotropy regions the algorithm is implementing 

adaptive regularisation levels to prevent the amplification of spurious components 

due to noise.  

In relation to probabilistic tractography the following methodological comparison is 

important. Seed-based tractography is strongly affecting the number of streamlines 

and only visualises the streamlines from that specific seed region. Hence the 

number of streamlines visualised is strongly related to the size and location of the 

chosen region of interest (ROI). Shifting the ROI hugely affects the reconstruction 

both in probabilistic and deterministic approaches.  

Whole brain tractography by contrast reconstructs all possible streamlines and then 

visualises the streamlines passing through a selected ROI. This approach is 

therefore less user-dependent than seed-based approaches. Unfortunately, 

probabilistic has more computational constraint for whole brain analyses and hence, 

for practicable applications, probabilistic can only be done as seed-based approach. 

Probabilistic tractography 

A measure of uncertainty within the data is calculated based on a chosen algorithm. 

Once the uncertainty is derived, the streamlining algorithm is run repeatedly to build 

up a pattern of possible pathways. The end result is a set of multiple pathways 

starting from the chosen seed, which is then conventionally summarised by 

assigning to each voxel the percentage of pathways, launched from the seedpoint, 

that pass through the voxel (Jones 2010; Jones & Basser 2004). It should also be 

considered that there are effects of distance on connection probabilities, whereby 

the confidence assigned to connections diminishes with increasing distance from 

the seed point (figure 3). This limitation impacts especially on the investigation of 

long-range interlobar (e.g., inferior fronto-occipital fasciculus) or interhemispheric 

(e.g., complete corpus callosum) connections. 
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Deterministic tractography, as the name implies, is a more rigid and conservative 

approach to tractography. Deterministic tracking only produces one tract that is the 

most likely reconstruction, whereas probabilistic tracing visualises all possible 

propagations starting from a ROI. This means that whole brain tractography is less 

examiner-dependent as all possible streamlines are generated. At the same time 

the ROIs are usually larger than in probabilistic tractography. However, 

deterministic tractography in contrast does not account for a measure of uncertainty 

as it is done in probabilistic algorithms. By the same token, probabilistic 

tractography is seed-based, which means that if the ROI is moved by a few voxels a 

different reconstruction will be visualised. Hence, probabilistic tractography is highly 

dependent and sensitive to ROI position. 

 

12.5 Shortcomings of voxel-based statistical analyses 

Voxel-based lesion mapping approaches are commonly used these days and date 

back to the early clinic-anatomical pioneers Paul Broca and Carl Wernicke. 

However, with the development of in vivo neuroimaging methods and the readily 

available software packages to perform such analyses, the current voxel-based 

approaches were scrutinised carefully. 

Current methods for lesion overlap map analysis (Rudrauf et al. 2008; Thiebaut de 

Schotten, Tomaiuolo, et al. 2012b) involve calculating the number or proportion of 

patients with injury to each voxel in the brain. This can be done separately for 

behaviourally distinct groups (e.g., with and without some behavioural deficit) or 

anatomically distinct groups (e.g., frontal vs. occipital lesions). A more recent 

addition to this method is the voxel-based lesion-symptom mapping (VLSM) (Bates 

et al. 2003). The result of a VLSM analysis is a statistical map in which each voxel 

quantifies the difference in observed behaviour between patients with and without a 

lesion in that location. The underlying statistic is most commonly a permutated t-test 

or the Brunner-Menzel test (Rorden et al. 2007). 

The following limitations need to be considered when interpreting these results. 1. 

Lesion overlay maps indicate areas of greatest overlap within a group of patients. 

However, one limitation is that only damage to brain voxels is considered (Mah et 

al., Brain in press). This closely resembles the problem that this overlap might be 

primarily due to the vascular anatomy, which renders certain areas (e.g., the insula) 

more vulnerable to damage than others. With such an assumption, some identified 

areas may not represent areas pivotal for lost/reduced functions but are simply 
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anatomically vulnerable regions (Mah et al., Brain in press). Nevertheless, these 

areas might be important for a given function either directly as a functional hub or 

indirectly as a relay knot or supporting area. 2. The nature of the method favours a 

selection bias whereby patients who present with transient deficits or small strokes 

are likely to be excluded. Most studies are conducted in chronic rather than acute 

stroke and hence only chronically affected patients are accounted for. 3. The area 

of damage is usually not restricted to the underlying functional modules or 

cytoarchitectonic areas (e.g. BA 44/45). Hence, a careful consideration across 

different methods is advisable. 4. In order to obtain a lesion overlay map all 

structural images have to be warped into common reference space. To this end the 

presence of a stroke, especially with different lesion extent, might introduce some 

alignment errors that might affect the registration and subsequently affect the 

results. 5. With the lesion overlay method only damaged areas are identified which 

are likely to correspond to the core of a stroke lesion. However, morphologically 

intact but functionally comprised areas are not taken into consideration. Hence, 

supplementing the voxel-based lesion mapping with perfusion measures is pivotal. 

6. Lesion overlay methods do not provide good temporal resolution and no time 

course of the evolution of lesioned areas is considered. 

These limitations are being discussed in the literature, however, there is still little 

consensus as to what the “gold standard” should be. Hillis et al. (2004) for example 

suggest scanning acute stroke patients regardless of their lesion size to overcome 

the selection bias. On the contrary, Rorden and Karnath (2004) argue to recruit 

chronic patients to overcome the problem of structural-functional mismatch.  

The current study attempted to address these issues and consecutively recruited 

acute stroke patients (overcoming the selection bias for transient symptoms and 

small strokes) and followed them up six months after (overcoming the mismatch 

bias). Additionally, perfusion (to assess perfusion mismatch and whole brain hypo-

/hyperperfusion) and diffusion imaging (to assess white matter damage) together 

with behavioural measures (to perform voxel-based lesion symptom mapping) were 

acquired to complement the lesion analysis. 

 

12.6 Limitations of perfusion analyses 

It is instructive to note that the mean amplitude of CBF in this cohort of acute stroke 

patients is at times low (approximately 20 – 30 ml/100gm of tissue/min), when 

compared to the mean grey matter perfusion values found in young, healthy adults 
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(approximately 50 ml/100gm of tissue/min) (Petersen et al. 2010). There are several 

reasons why this may be the case as is discussed hereafter.  

Firstly, the raw CBF images of these subjects showed, in the majority of cases, 

substantial motion artefacts. This would have had a profound effect on the efficiency 

of labelling if the subjects moved in the region immediately below the cerebellum. 

However, the major contributing factor from the point of view of motion would have 

been caused by the ‘blurring’ of grey and white matter regions. Since the mean of 

grey matter is substantially lower (~ 20 ml/100gm of tissue/min for healthy, young 

subjects), the mean over the whole brain would have also been reduced.  

Secondly, ASL is a subtraction technique with low Signal-to-Noise Ratio (SNR). The 

maximum perfusion induced differences in the MR signal in the order of 2%. As 

pointed out in the methods section, we collected three ‘control-label’ pairs to 

compute the CBF maps. Motion during the collection of the raw ‘control’ and 

‘labelled’ images would have also reduced the mean value across all voxels.  

Thirdly, in the presence of stroke it is likely that these subjects had abnormal blood 

velocity, which would have given rise to inefficient labelling of arterial blood. 

Unfortunately, in an effort to limit the MRI examination to a total maximum of 60 

min, we did not have time to perform Phase Contrast Angiography to compute the 

actual value of the peak blood velocity in carotid arteries.  

Fourthly, the SNR of the perfusion scan would have also been compromised by the 

haematocrit of the subjects who on the whole, were of an advanced age (mean 

63±39 years). It is well known that as the haematocrit changes (Silvennoinen et al. 

2003), the value of the T1 of blood reduces and therefore the perfusion induced 

signal difference would decay more quickly for the same post-labelling delay.  

Finally, a fundamental problem of performing ASL in this cohort is the fact that (as 

the data shows), perfusion is severely compromised in several regions around the 

lesion and therefore a longer post-labelling delay than the one used (we used 

1500ms); may have been necessary to optimise the quantification of the CBF. 

However, from previous investigations on healthy, elderly control subjects (data not 

shown), lengthening of the post-labelling delay also induces further loss in SNR. As 

a compromise, we decided to use the value that we normally use in both young and 

elderly healthy controls (i.e. 1500ms). Future studies where perfusion assessment 

may be a higher priority would involve CBF mapping with a less motion sensitive 

version of PCASL (e.g. with an EPI readout) and an array of post labelling delays in 
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order to accommodate the greater heterogeneity in blood flow apparent in 

cerebrovascular disease. 

 

12.7 Shortcomings of this study and future directions 

Certain limitations and shortcomings have become evident over the course of this 

study. Where possible they were immediately addressed, such as the intolerance of 

acute patients to classical DTI sequence that was thence split into two shorter 

acquisitions. Other issues were beyond the control of the research team but should 

be taken into account for future studies. 

 

12.7.1 Neuroimaging 

In the acute stage, the allocated scanning time of one hour per subject is not 

sufficient. Patients are less mobile (due to hemiparesis) than controls and hence the 

transfer from chair to bed may take longer than anticipated. Also, medical 

impediments might delay or interrupt scanning if the patient does not feel well or 

becomes nauseous. In this patient cohort, in-scanner communication is more 

demanding than usual and quite often a member of the research team would go into 

the scanner room to check on the patient. Future studies of this sort, should allow 

up to 1.5 hours of scanning time to accommodate these specific needs. 

Given the time constraints described above, the scanning protocol was not acquired 

in full for some of the patients and/or radiographers mistakenly chose a differently 

sliced T2-weighted image. Due to these irregularities the pre-processing for this 

study was not streamlined. For the perfusion imaging, the conventional T2-weighted 

imaging contrast is commonly used to co-register the ASL signal. In this study, 

using the T2-weighted scans was not possible and therefore the T1-weighted MR 

images were axially re-sliced and used instead.  

For the diffusion imaging in the acute stage, the motion artefacts were substantial 

and we therefore implemented a split sequence that was later concatenated during 

the pre-processing. This split sequence allows for shorter scanning times and 

therefore adds to the patients’ comfort whilst reducing the presence of artefacts at 

the same time. These changes were very successful and are now standard 

procedure in the currently planned stroke imaging studies in our centre. 

Improvements can be applied to TBSS analyses. Lesion masking should be applied 

to interpret FA changes independent of the lesion. This can be achieved in the 
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latest version of fsl where the new script setup_masks is supplied to assist in using 

lesion masks (supplied by the user) in randomise to exclude (inconsistently located) 

lesions from group studies 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/randomise/UserGuide#Associated_Tools).  

 

12.7.2 Logistics 

Some issues that hampered the current study are no longer applicable as the 

Clinical Research Facilities are now implemented within King’s College Hospital, 

making patient ambulance transport obsolete for future acute studies 

(http://www.kcl.ac.uk/iop/depts/neuroimaging/facilities/CRF/index.aspx).  

As described in Table 12 in chapter 6.5, ambulance transport was not efficient and 

often resulted in delayed arrival of the patients, which in turn lead to incomplete 

acquisitions. Should future studies chose a similar layout, instead of utilising the 

new facilities, study-dedicated transport ought to be in place.  

Further, given the short target interval between admission and the baseline MRI 

scan, the absence of previous clinical notes is an obstacle. In this study, any 

possible effort was undertaken to obtain written notes by involving the next of kin of 

each patient or contacting the patients’ General Practitioner and where necessary 

getting in contact with the hospitals that did perform the surgeries. Unfortunately, 

obtaining the clinical notes was not always possible and some patients had to be 

excluded from the study. 

A further reduction in the sample size was due to the fast repatriation procedures at 

KCH. Ethical approval did not extend to other hospitals beyond KCH and therefore, 

patients that are not scanned within their inpatient stay at KCH were lost to the 

study.  

 

12.7.3 Sample size and study cohort 

The sample size is smaller than the initial target size due to the reasons specified 

above and in Table 12 in chapter 6.5 as well as the strict exclusion criteria of the 

study. The inclusion criteria for this study can be considered restrictive but did allow 

us to exclude various potential nuisance variables, which would have otherwise 

reduced the power. The difficulties of recruiting acute stroke patients for advanced 

imaging studies often lead to the exclusion of the acute stage in longitudinal 

imaging studies (Cardebat et al. 2003; De Boissezon et al. 2005; Fernandez et al. 
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2004; Heiss et al. 1999; Léger et al. 2002). Future studies should aim to recruit 

higher numbers of participants to address these issues and possibly more than one 

full time person should be dedicated to recruitment and analysis.  

Our study cohort can be considered selective as patients had to be medically stable 

enough to tolerate ambulance transport and be MRI compatible (i.e no 

claustrophobia, absence of metal, availability of previous medical history). Also, we 

recruited first-ever clinical strokes (although this can not exclude the presence of 

silent cerebral infarcts that have previously not been detected) which can be 

expected to occur in approximately 10% of the population (Das et al. 2008). 

 

12.8 Overall Conclusion 

Few images and concepts have achieved iconic status in the neurosciences. The 

classical view of the anatomy of language has, and rightly so. It is amongst the first 

theories to explain higher cortical functions in humans and it is applicable to the 

healthy and pathological population. Further, Broca’s seminal work provided the 

foundation for cortical localisation theories. Over the centuries, challenges have 

been posed toward the classical model, yet it was never falsified but rather 

expanded and embedded into more a complex anatomy of language. It has been 

established, using various methods, that language processes involve more cortical 

and subcortical resources than merely Broca’s and Wernicke’s areas. Despite years 

of intense research, the entire complexity of language comprehension, language 

production and language disorders (such as aphasia) are still not fully understood. 

With regards to aphasia recovery, much of the improvement seen in language 

functions in the first three months can be related to neurophysiological factors, such 

as oedema reduction (Fazzini et al. 1986), resolution of diaschisis (Seitz et al. 

1999), and reperfusion of salvageable tissue (A. E. Hillis et al. 2006; Fridriksson et 

al. 2012). However, little is known about the neurocognitive and psychological 

processes that might influence recovery (Code 2001).  

The clinico-anatomical approach based on a narrow cortical localisationism 

attracted criticism since its beginning. In England John Hughlings Jackson was one 

of the first to point out that localisation of symptoms does not necessarily imply 

localisation of function. He argued that it is entirely possible that some symptoms 

can be explained by a secondary effect of the damage on other regions, such as, 

for example, some positive symptoms resulting from a ‘release’ mechanism (Catani, 

Dell'Acqua, Bizzi, et al. 2012a). Furthermore, he highlighted that many variables 
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intervene in the correlative process, such as the ‘depth of the dissolution’; the ‘onset 

and rapidity of the process’; the ‘kind of brain’ in which the dissolution occurs, and 

the ‘influence of external and internal circumstances’ upon the patient. Jackson’s 

writings had little impact on his contemporaries, but were used some decades later 

as the ensign of the resurgent holistic movement. Crucial to holism was the 

assumption that all areas are mutually interconnected through short- and long-range 

fibres. According to the holistic theory, this architectural property of the brain 

explains the ability of other parts of the cortex to take over functions within the 

competence of the damaged area, a property designated by Karl Lashley as 

‘equipotentiality’ of the cortex. Lesions, regardless of their location, always affect 

underlying connections that then lead to complex deficit patterns (Catani, 

Dell'Acqua, Bizzi, et al. 2012a). This variability of white matter damage might 

account for negative cortical case reports and the observed variability in clinical 

presentation and lesion-symptom mapping results (Cramer 2008). Future studies 

should also attempt multimodal imaging to comprehensively answer the pressing 

questions of temporal and connectional language networks (Conner et al. 2008; 

Ellmore et al. 2009; Thiebaut de Schotten, Dell'Acqua, et al. 2011a). 

The current study by no means claims to solve this puzzle but was able to 

contribute novel ideas that hopefully will be taken into account in the future. The 

recovery of aphasia has to be re-investigated with multimodal methods embedded 

in a neurocognitive framework that is also accounting for compensation 

mechanisms at different levels (neurological, cognitive, and psychologically).  

 

Figure 92 shows the current understanding of the left-hemispheric language 

network based on results from functional studies (fMRI, EEG) and connectional 

anatomy studies (DTI, post mortem dissections). The model contains the relevant 

anatomical structures from auditory language perception to comprehension as 

described by Friederici (2012; Hickok & Poeppel 2000) as well as the structures for 

language articulation (Shalom & Poeppel 2008; Price 2010). For articulation, the 

recently described frontal aslant tract connecting Broca’s area with the pre-SMA is 

included in the model (Catani, Dell'Acqua, Vergani, et al. 2012b). The cross-modal 

association area of the inferior parietal lobe, especially implicated in semantic 

processing and reading, is recognised (Geschwind 1965a; Seghier 2012). The role 

of memory processes has been taken into account (Makuuchi & Friederici 2013; 

Seghier 2012). Likewise, the visual word form area (a key region for reading) and its 

white matter connections have been acknowledged (Dehaene & L. Cohen 2011; 
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Yeatman et al. 2013). This model of language function and aphasia is still work in 

progress. 

 

 

Figure 92 Anatomy of comprehension, articulation, reading, and aphasia  

This figure shows Prof. Angela Friederici (middle), Dr. Marco Catani (right), and Stephanie 
Forkel (left), developing their neuroanatomical model of language and aphasia based on 
functional imaging results (Friederici) and connectional anatomy (Catani, Forkel). Picture 
taken at OHBM 2013 in Seattle, WA, US (courtesy of Arjun Sethi). The resulting model can 
be seen on the right. The pathways relevant to this figure are the uncinate, the anterior, 
posterior and long segments of the arcuate fasciculus, the frontal aslant tract, intra-insular 
connections, and temporal-occipital u-shaped fibres. MFG, middle frontal gyrus; STS, 
superior temporal sulcus; MTG, middle temporal gyrus; SMG, supramarginal gyrus; AG, 
angular gyrus; VWM, verbal working memory; ac, articulation; cs, central sulcus; or, pars 
orbitalis; tr, pars triangularis; op, pars opercularis; pre-SMA, pre-supplementary motor area; 
VWFA, visual word form area. Also indicated are BA47,45,44,6,4. 
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APPENDIX A. CARDIAC GATING PROTOCOL 

Cardiac'gating'scanner'settings'for'DTIstroke

Scan'A:'8.30'min,'4B0,'29DWI,'93.5
Scan'B:'8.45'min,'3B0,'31DWI,'93.5

heart'rate scanner'value max'slices scan'time'(min)
40 9 63 7.39
41 9 63 7.28
42 10 60 8.06
43 10 60 7.54
44 10 60 7.44
45 10 60 7.30
46 10 60 7.24
47 10 60 7.14
48 10 60 7.05
49 12 60 8.20
50 12 60 8.10
51 12 60 8.00
52 12 60 7.51
53 12 60 7.42
54 12 60 7.33
55 12 60 7.25
56 12 60 7.17
57 12 60 7.10
58 12 60 7.02
59 15 60 8.39
60 15 60 8.30
61 15 60 8.32
62 15 60 8.14
63 15 60 8.03
64 15 60 7.58
65 15 60 7.51
66 15 60 7.44
67 15 60 7.37
68 15 60 7.30
69 15 60 7.24
70 15 60 7.17
71 15 60 7.17
72 15 60 7.05
73 15 60 9.19
74 20 60 9.11
75 20 60 9.04
76 20 60 8.57
77 20 60 8.50
78 20 60 8.43
79 20 60 8.37
80 20 60 8.30
81 20 60 8.24
82 20 60 8.18
83 20 60 8.12
84 20 60 8.06
85 20 60 8.00
86 20 60 7.54
87 20 60 7.49
88 20 60 7.44
89 20 60 7.30
90 20 60 7.38
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APPENDIX B. NATIONAL HEALTH INSTITUTE STROKE SCALE 

(NIHSS) 
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APPENDIX C. WESTERN APHASIA BATTERY REVISED (WAB-R) 
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APPENDIX D. UNIX COMMANDS 

1. Getting the data from the scanner and conversion into readable format 

1.1. Project data storage 

Data stored on two different servers: 

Analysed data: /home/username (30GB with Biostats department) and  

Raw data: /data/research/username (100GB with CNS) 

 

Data collection from CNS 3T scanner 

ssh –X username@server 

cd /home/mri_data/CNSCNSB (CNSCNSA= 1.5T, CNSCNSB = 3T) 

cp –r NAME /home/username/studyname/ 

-r copies all the subfolders 

 

1.2. Uncompressing and converting DICOM to NIFTI files 

cd subject folder/DICOM/subfolder/ 

Two files should be ending in ~03. Those are the DTI sequences, i.e. 008160.0403.tar.bz2. 
This identifies that the fourth scan is the DWI series. 

bunzip2 008169.0004.tar.bz2   

(first set of 30 directions, then second set of 30 directions) 

tar –xvf 008169.0004.tar  

This produces a series of DICOM files.  

 

In separate window (still UNIX): 

cd /home/K0919341/PROG/mricron 

./dcm2niigui 

Navigate to the previously created folder: File, DICOM to NIFTI, username, study name, 
subject folder, DICOM, Diffusion folder, first set of directions and repeat for second set of 
directions, select first DICOM file (000001) and click open. 

 

The first conversion will have 33 directions, the second 34 directions. Both files need to be 
renamed and moved into a NIFTI folder for further processing: 34 directions=b and 33 
directions=a 

mv 20100319_102611s004a1001.nii subjectID.nii 

cp DTISTROKE05a.nii /home/username/Diffusion/NIFTI_preconcat/ 

 

2. Diffusion tensor imaging pre-processing 

2.1. Concatenate nifty files 
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In matlab: set path (if necessary): file, set path with subfolders, 
Users/stephanieforkel/Applications/Exp2Trk/ 

Or addpath(‘ /user/folder/subforlder/programme/’,path) 

 

Select the folder with the two NIFTI files (a,b,) in the left panel 

NBL_concat (2, {‘name_a.nii’, ‘name_b.nii’}, {‘name_a.bval’, ‘‘name_b.bval’}, 
{‘name_a.bvec’, ‘name_b.bvec’}, 1, 0, ’outputname.nii’) 

 

NBL_concat: order has to be nii/bval/bvec 

NOTE: bval is OK, bvec is broken so it is possible to change the input/output names 
accordingly but keep bval/bvec identical. 

 

2.2. Voxel fix (data-dependent) 

Collect concatenated files in one NIFTI folder. 

Load matlab from home not within the folder: 

navigate into the NIFIT concatenated directory  

voxelsize_fix 

→ Creats: SubjectID_C.nii 

2.3. ExploreDTI 

Connect to CNS server ssh –X username@server  

In matlab: set path (if necessary): file, set path with subfolders, 
Users/stephanieforkel/Applications/Exp2Trk/ 

addpath(‘ /user/folder/subforlder/programme/’,path) 

Calculate DTI mat file 

Format diffusion weighted data: 4DNIFTI 

Permute spatial dimensions: AP RL IS 

Flip spatial orientations: AP RL IS 

Perform visual check: No 

Diffusion tensor estimation: Linear (high speed-low accuracy) 

Format diffusion information: text file (*.txt) 

Background masking approach: automatic 

Permute gradient components: Y X Z 

Flip sign of gradient components: X Y –Z (study specific!) 

Data processing mode: multiple or single data set 

b-vlaue, voxel size, nr B0, nr DWI, matrix size: 1500, 2.4x2.4x2.4, 7, 60, 128x128x60 (study 
specific!) 

 

Convert raw data to mat file 

Input folder: NIFTI_done 

Gradient table in DTIinfo/DTISTROKE_60.txt 

Output folder: MAT 
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Check for fibre orientation 

Load DTI from MAT and select Y view 

Seed around the corpus callosum and Calculate. 

Draw and check reconstruction. Ctrl + click closes drawings 

If fibre orientation is correct, run for multiple datasets. 

 

→ Creates DTISTROKEXX_C.mat in MAT folder 

 

Motion & Eddy Current corrections and tensor estimation 

Plugins, Motion/distortion correction 

Change (same window as below):  

Tensor estimation =3 (for special subjects set to 5 in V.4.8.1) 

Transform DTI to MNI =0 

(~ 50min per subject) 

→ Creates: subjectID_C_MD_C_E.mat  

 

Tensor-based tracking 

Plugins 

Whole brain tractography 

DTItensor interpolation – high memory needs 

Multiple data sets/ single data set 

analyse for FA thresholds 15 and 20!  

Long computing time (let run over night) 

 

Seedpoint: 2.4x2.4x2.4 

Seed FA threshold: 0.2 

FA threshold: 0.2  1 

MD tracking: 0  0.002 

Linear tracking threshold: 0  1 

Planar tracking threshold: 0  1 

Spherical tracking threshold: 0  1 

Fibre length range: 25 500 

Angle threshold: 45 

Step size: 0.5 

Interpolation: 2 

 

Input mat file: CMD_C_E.mat 

→ Creates: subjectID _C_MD_C_E.mat & subjectID _C_MD_C_E_tracts.mat 

put both in separate folder 
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Export to TrackVis 

matlab 

FLA_ExpDti2TrackV(0,1) 

Select folder with ~MC_C_E.mat and Tracts.mat 

→ Creates a folder with the trk file and all the maps (FA, FA colour, MD/ADC etc) 

 

3. Lesion Analysis (simple overlay) 

3.1. Lesion size and lesion volume 

Lesion size always to be drawn in native space not standaradised. Classically, drawn on a 
plain structural T1. In our case we need to reslice the aquired coronal SPGRs (T1) into axial 
slices (see below). Volume of interest (.voi) are then drawn on the re-sliced axial T1. 

 

FSL, BET 

Input: concatinated file 

Advanced options: tick output binary brain mask 

Fraction threshold: 0.5 

Robust brain centre estimation → GO 

 

Fslview: check coregistration visually 

gunzip and copy 

 

fslstats filename.nii(.gz) –V displays all voxels of the lesion not considering the ) voxels (i.e. 
non touched voxels) 

 

3.2. MNI normalization of lesion volume 

MRICRON 

Open: axial_cut_T1 

Save: axial_cut_T1.voi convert to .nii with mricron in draw creates binary map 

 

FSL 

FLIRT, Utils, Apply FLIRT 

Matrix: MNI_T1reg.mat 

Input: volume.nii 

Ref: normalized 

Out: subjectID_lesion_norm.nii 

 

fslmath DTIXX_MNIlesion.nii –bin–div 255 DTIXX_MNIlesion_binarised.nii 

-div 255 = divided by 255 as image was between 0-255 but binarised needs to be between 
0-1 

 

3.3. Percentage overlay maps 
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SPM, fMRI, BATCH, SPM, UTIL, Image Calculator 

Input: MNIlesions (n=13) 

 

fslmerge –t tmpbin ‘$FSLDIR /bin/imglab *.nii.gz’ 

Concatenates all files together 

 

fslmaths tempbin.nii.gz –Tmean ‘percentage.nii’ 

 0.9 – 1  90% 

0.75-0.8  75% 

0.5 – 0.51  50% 

0-1   total overlay 100% 

 

4. Axial re-slicing of coronal SPGRs (manual) 

in PROG 

./dcm2nii(sp) –e N –d N –I N –o 
/data/research/username/subjectID/DICOM/007986/0009/*.dcm(sp) *.dcm 

 

Produces three files: 

co…. =  cut axial SPGR 

oo… = axial SPGR 

oo…210=  ? 

 

Re-slice coronal SPGR to axially cut T1 

Original zipped DICOM SPGR files 

 

mkdir NIFTI 

tar -xjf sequence.tar.bz2 -C ./ NIFTI / 

dcm2nii -e N -d N -i N -o 0000*.dcm 

 

or in PROG: 

 

./dcm2nii –e N –d N –I N –o /data/research/username/studyfolder/ subjectID 
/DICOM/0007986/SPGR sequence folder/*.dcm *.dcm 

Results in a series of DICOMS plus three files: 

co0000….nii.gz =  cut axial SPGR 

o00000….nii.gz =  axial SPGR 

000…210.nii.gz =  coronal SPGR?? 

 

Strip T2prop 

bet DTISTROKEXX_T2prop DTISTROKEXX_T2prop_stripped -f 0.4 -g 0 -m 
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Co-register T1 to stripped T2 (affine) and write a matrix only  

flirt -in DTISTROKEXX_axial_cut_T1.nii.gz -ref DTISTROKEXX_T2prop_stripped.nii.gz -
omat DTISTROKEXX_T2reg_T1.mat -dof 12 

 

Invert matrix 

convert_xfm -omat inv_ DTISTROKEXX_T2reg_T1.mat -inverse 
DTISTROKEXX_T2reg_T1.mat 

 

Register T2 brain mask to axial cut T1 using inverted matrix   

flirt -in DTISTROKEXX_T2prop_stripped_mask.nii.gz -ref 
DTISTROKEXX_axial_cut_T1.nii.gz -applyxfm -init inv_ DTISTROKEXX_T2reg_T1.mat -out 
DTISTROKEXX_T2reg_toT1_brain_mask   

 

Binarise the registered brain mask  

fslmaths DTISTROKEXX_T2reg_toT1_brain_mask.nii.gz –bin 
bin_DTISTROKEXX_T2reg_toT1_brain_mask.nii.gz   

 

Strip T1 using the binarised T2_brainmask  

fslmaths DTISTROKEXX_axial_cut_T1.nii.gz –mul 
bin_DTISTROKEXX_T2reg_toT1_brain_mask.nii.gz stripped_axial_cut_T1_DTISTROKEXX 

 

fslview filename 

 

MNI normalisation of brain scans 

standard_space_roi DTISTROKEXX_axial_cut.nii.gz DTISTROKEXX_axial_cut_brain.nii.gz 
–b 

default is affine 

strip T1 again with –f 0.1 and flirt to MNI 

 

5. Continuous arterial spin labelling 

 

Setting the origin manually on T1s and pCASL. 

Segmenting the T1s using the spm clinical toolbox 

Co-reg smoothed pCASL to smoothed GM and apply transformation to non-
smoothedpCASL:  

 

GM = strtrim('/Users/stephanie/Dropbox/Structural/1/T1_Axial_cut/Orginial 

T1/c1DTISTROKE18_axial_cut_T1.nii') %specify target volume (GM) 

seg_params = '/Users/stephanie/Dropbox/Structural/1/T1_Axial_cut/Orginial 

T1/DTISTROKE18_axial_cut_T1_seg_sn.mat' 

pCASL_file = 'CBF_1_18.img' %specify ASL 
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pCASL_dir  = '/Users/stephanie/Dropbox/RAW/1/' %pCASL directory 

pCASL=strtrim(strcat(pCASL_dir, pCASL_file));% specify ASL image 

 

tmpl = GM 

spm_smooth(tmpl,'GM_temp.nii',[6 6 6]) %create temporary smoothed GM image (6mm 

kernel) 

vg=spm_vol('GM_temp.nii'); %load temp GM into matlab 

flags.regtype='rigid' % specify that registration will be rigid body 

f = pCASL 

spm_smooth(f,'temp.nii',[6 6 6]); %created smoothed ASL image 

vf=spm_vol('temp.nii'); %load smoothed ASL into matlab 

[M,scal] = spm_affreg(vg,vf,flags); %register two smoothed images together 

M3=M(1:3,1:3); %select the first 3 rows and columns from transformation matrix 

[u s v]=svd(M3); %calculate SVD 

M3=u*v'; 

M(1:3,1:3)=M3; 

N=nifti(f); %create a new nifti header for ASL image 

N.mat=M*N.mat; % apply the translations and rotations 

create(N); %write out the registered pCASL as a nifti (same name, only header has 

changed) 

% apply spatial normalization parameters from segmentat iob 

matlabbatch{1}.spm.spatial.normalise.write.subj.matname{1} = seg_params % specify 

segmentation params 

matlabbatch{1}.spm.spatial.normalise.write.subj.resample{1} = strcat(pCASL,',1'); %specify 

image to be normalized 

matlabbatch{1}.spm.spatial.normalise.write.roptions.preserve = 0; 

matlabbatch{1}.spm.spatial.normalise.write.roptions.bb = [-78 -112 -50 

                                                          78 76 85]; 

matlabbatch{1}.spm.spatial.normalise.write.roptions.vox = [2 2 2]; 

matlabbatch{1}.spm.spatial.normalise.write.roptions.interp = 1; 

matlabbatch{1}.spm.spatial.normalise.write.roptions.wrap = [0 0 0]; 
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matlabbatch{1}.spm.spatial.normalise.write.roptions.prefix = 'w'; % new prefix 

% use imcalc to mask the brain 

matlabbatch{2}.spm.util.imcalc.input{1} = strcat(pCASL_dir,'w',pCASL_file) % first image is 

normalized pCASL 

matlabbatch{2}.spm.util.imcalc.input{2} = '/Applications/spm8/apriori/brainmask.nii,1' % 

specify brain mask 

matlabbatch{2}.spm.util.imcalc.output = strcat(pCASL_dir, 'mask_w',pCASL_file); % specify 

output (masked) filename 

matlabbatch{2}.spm.util.imcalc.outdir = {''}; 

matlabbatch{2}.spm.util.imcalc.expression = 'i1.*(i2>0.8)'; % multiply pCASL by binarised 

brain mask (80% probability of being brain) 

matlabbatch{2}.spm.util.imcalc.options.dmtx = 0; 

matlabbatch{2}.spm.util.imcalc.options.mask = 0; 

matlabbatch{2}.spm.util.imcalc.options.interp = 1; 

matlabbatch{2}.spm.util.imcalc.options.dtype = 4; 

% smooth the masked images 

matlabbatch{3}.spm.spatial.smooth.data(1) = cfg_dep; % configure dependency to grab  

output from imcalc 

matlabbatch{3}.spm.spatial.smooth.data(1).tname = 'Images to Smooth'; 

matlabbatch{3}.spm.spatial.smooth.data(1).tgt_spec{1}(1).name = 'filter'; 

matlabbatch{3}.spm.spatial.smooth.data(1).tgt_spec{1}(1).value = 'image'; 

matlabbatch{3}.spm.spatial.smooth.data(1).tgt_spec{1}(2).name = 'strtype'; 

matlabbatch{3}.spm.spatial.smooth.data(1).tgt_spec{1}(2).value = 'e'; 

matlabbatch{3}.spm.spatial.smooth.data(1).sname = 'Image Calculator: Imcalc Computed 

Image: output.img'; 

matlabbatch{3}.spm.spatial.smooth.data(1).src_exbranch = substruct('.','val', '{}',{2}, '.','val', 

'{}',{1}, '.','val', '{}',{1}); 

matlabbatch{3}.spm.spatial.smooth.data(1).src_output = substruct('.','files'); 

matlabbatch{3}.spm.spatial.smooth.fwhm = [8 8 8]; %specify smoothing kernel to be applied 

to mask_pCASL 

matlabbatch{3}.spm.spatial.smooth.dtype = 0; 

matlabbatch{3}.spm.spatial.smooth.im = 0; 
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matlabbatch{3}.spm.spatial.smooth.prefix = 's'; 

spm_jobman('run',matlabbatch) %run the batch 

clear matlabbatch %clear batch in anticipation of the next subject 

 

Remask to include GM only (>30%) 

Using spm imcalc expression i1.*(i2>0.3) 

Input 1: smoothed masked CBF from step before 

Input 2: GM prior from spm 

 

Split MNI mask and binarise 

fslmaths MNI152_T1_1mm.nii.gz -roi 0 89 0 218 0 182 0 1 R_MNI_mask 

fslmaths MNI152_T1_1mm.nii.gz -roi 89 90 0 218 0 182 0 1 L_MNI_mask 

 

foreach i ( *nii.gz ) 

foreach? fslmaths $i -thr 0.2 -bin 1bit_20_${i} 

foreach? echo $i 

foreach? end 

 

Apply bin split MNI mask to CBF maps 

matlabbatch{1}.spm.util.imcalc.input = { 

                                        '/Users/stephanie/Dropbox 

(NBLdisk)/RAW/L_R_Split/GM30_1_XX.img,1' 

                                        '/Users/stephanie/Dropbox 

(NBLdisk)/RAW/L_R_Split/1bit_20_L_MNI_mask.img,1' 

                                        }; 

matlabbatch{1}.spm.util.imcalc.output = 'LH_GM30_smask_1_XX.img'; 

matlabbatch{1}.spm.util.imcalc.outdir = {'/Users/stephanie/Dropbox (NBLdisk)/RAW/'}; 

matlabbatch{1}.spm.util.imcalc.expression = 'i1.*i2'; 

matlabbatch{1}.spm.util.imcalc.options.dmtx = 0; 

matlabbatch{1}.spm.util.imcalc.options.mask = 0; 

matlabbatch{1}.spm.util.imcalc.options.interp = 1; 
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matlabbatch{1}.spm.util.imcalc.options.dtype = 4; 

 

Extract globals from segmented GM data and create output 

foreach i (LH/RH_GM30_smask thresholded CBF maps) 

foreach? echo $i >> $i.txt 

foreach? fslstats $i -M>>$i.txt 

foreach? end 

 

paste -d , *.txt >> FINAL_SPLIT_BRAIN_PERFUSION.csv 

 

 

6. TBSS analysis acute vs. chronic patient data 

In a first step all FA maps were zipped (gzip) and saved in a folder “Acute” with all FA maps 
labelled as "identifier.nii.gz"; same procedure for chronic FA maps (exactly the same name 
as for acute). The analysis steps then included co-registering the chronic FA maps to the 
acute maps before subtracting them. The maps were then averaged and the TBSS script 
available online from the FSL web site was applied. 

 

echo "Registering Chronic with Acute FA (linear)" 

mkdir temp 

mkdir sub 

cd Acute 

for a in *.nii.gz 

do echo $a 

cd .. 

flirt -in Chronic/$a -ref Acute/$a -out Chronic/Reg_$a -omat temp/2acute_$a.mat -bins 256 -
cost corratio -searchrx -90 90 -searchry -90 90 -searchrz -90 90 -dof 6 -schedule 
/usr/local/fsl/etc/flirtsch/sch3Dtrans_3dof 

% NOTE: six degrees of freedom are sufficient as it is a repeated within-subject scan. (3 
DOF translation, 6 DOF plus rotation) 

 

echo "Subtracting Chronic with Acute FA (linear)" 

fslmaths Chronic/Reg_$a -sub Acute/$a sub/$a 

 

echo "Averaging and masking all FAs" 

fslmaths Acute/$a -add Chronic/Reg_$a -div 2 $a 

cd Acute 

done 

 

echo "TBSS job now" 
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cd .. 

tbss_1_preproc *.nii.gz % prepares FA data in TBSS working directory in the right format 

tbss_2_reg –T % elastic and affine registration of all FA images into standard space (Oxford 
template (-T) or own template (-t)) 

tbss_3_postreg –S % creates mean FA image and skeletonizes it. –S to use study-specific 
template 

tbss_4_prestats 0.2 % projects all subject’s FA data onto the mean FA skeleton with  

an FA threshold of 0.2 

tbss_non_FA sub % L2 in the original script was changed for the folder ‘sub’ containing all 
the subtraction maps 

echo "TBSS preprocessing finished – be happy the script run and move on to statistical 
analysis!" 

 

Next step is to define the model.  

Glm_gui or alternatively open FSL, MISC, GLM Setup 

Number of EVs is equivalent to the number of regressors. In this case I used 5 regressors: 
EV1: age, EV2: sex, EV3:TPA, EV4: lesion size, EV5: AQ (Chronic-Acute). 

Define the model as ‘higher level/non-time series design’, define the contrasts to be used 
and save model in TBSS stats folder. 

randomise -i all_FA_skeletonise -o tbss -m mean_FA_skeleton_mask -d design.mat -t 
design.con –n 1000 –T2  -V  

Design here is defined as GLMrecovery.mat -t GLMrecovery.con 

Number of iterations is set to -n 1000  

 

Given that FSL uses non-paramtric stats the number of iterations can be added. Default is -n 
500 however this depends on the data. More details here: 
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/Theory. 

 

Open FA_mean as background (min 0, max 0.1), add overlay: tbss_tfce_corrp_tstat1 

NOTE to express p<0.5, set the min to 0.95 and the max to 1, 
as fslview does not display the p-value but (1-p-value). 

The more regressors one uses the lower the significance 
drops due to the multiple comparison correction! For 
example, when adding 5 regressors into the model, the 
default stats p-value of 0.05 is decided by five rendering the 
significant level to 0.01. Meaning that we now do not accept 
variable that are significant at 0.05 but only if they reach the 
corrected significance level of p=0.01. 

More info to be found here: 
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide 

 

7. Export data to local hard drive 

Export pre-processed data using FileZilla 3.3.4.1 (http://filezilla-project.org). 

 

8. UNIX commands used 
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-r  everything below, i.e. subfolders 

-rw read & write 

!(nr) repeats commands nr=244 

?? Matches exactle 2 characters whereas * just matches any 
length (e.g. DTIstroke??.T1.gz) 

./ within current directory or execute command labeled * 

Bg has it run in the background 

bunzip *.bz2 Unzip every .bz2 file in given directory 

bzip2 zip up to *.bz2 

cat name.txt opens text files (DON’T use with big files) 

chmod 777 Activate script (indicated with *) 

Ctrl c stops commands 

Ctrl z suspends commands 

df –h disk free human readable, i.e. check for disk space 

fsl_sub send files to cue and uses all networks (→ very fast ☺ ) 

fslchfiletype Change file type (e.g. fslchfiletype NIFTI name.hdr) 

fslstats filename –V Volume in voxels of ROI (i.e. lesion size) 

gzip zip up to *.gz 

history shows all previous used commands 

History >> history.txt  Writes context into file 

ls –lh display authorisations 

ls –Ltr lists files in timely order to find the latest 

ls *.voi >> VOI.txt Lists everything ending in .voi and writes into text files 

ls Igrep –v DTISTROKE01 Shows all that is not DTIstroke01 

ls Igrep DTISTROKE01 Only show DTIstroke01 

Man manual 

pwd print working directory, i.e. displays current directory 

q quit 

qstat Shows all currently running jobs at a time( r=done, 
qw=quewe) 

rm -r yourdir Delete directory, icl. subfolders 

rm *.* removes everything 

slicesdir –p Shows overlay 

slicesdir ‘file’ Visualises files quickly in firefox 

unc2analyze Convert UNC to ANALYZE 

x executable 

xdispunc name To identify different sequences 
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academic staff 

DAAD UK Network of German Academics (since 2012) 

The German Academic Exchange Service (DAAD) is the German 
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Neuropsychology 
 
SSC Psychiatry Research aims to introduce medical students to the 
excitement and challenges of academic research psychiatry (2012).  
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Toolkit, Mricron, Superlab 
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